×

Exact partition functions for gauge theories on \(\mathbb{R}_\lambda^3\). (English) Zbl 1349.81173

Summary: The noncommutative space \(\mathbb{R}_{\lambda}^3\), a deformation of \(\mathbb{R}^3\), supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of \(\mathbb{R}_{\lambda}^3\). For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

MSC:

81T75 Noncommutative geometry methods in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
58B34 Noncommutative geometry (à la Connes)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Gracia-Bondía, J. M.; Várilly, J. C.; Figueroa, H., Elements of Noncommutative Geometry, Birkhaüser Advanced Texts (2001), Birkhaüser: Birkhaüser Boston, Basel, Berlin, See also · Zbl 0958.46039
[2] Connes, A.; Marcolli, M., A walk in the noncommutative garden (2006), available at
[3] Devastato, A.; Lizzi, F.; Martinetti, P., Grand symmetry, spectral action, and the Higgs mass, J. High Energy Phys., 01, Article 042 pp. (2014)
[4] Doplicher, S.; Fredenhagen, K.; Roberts, J. E., Space-time quantization induced by classical gravity, Phys. Lett. B, 331, 39-44 (1994)
[5] Witten, E., Noncommutative geometry and string field theory, Nucl. Phys. B, 268, 253-294 (1986)
[6] Dubois-Violette, M.; Kerner, R.; Madore, J., Noncommutative differential geometry and new models of gauge theory, J. Math. Phys., 31, 323-330 (1990) · Zbl 0704.53082
[7] Grosse, H.; Madore, J., A noncommutative version of the Schwinger model, Phys. Lett. B, 283, 218-222 (1992)
[8] Wallet, J.-C., Noncommutative induced gauge theories on Moyal spaces, J. Phys. Conf. Ser., 103, Article 012007 pp. (2008)
[9] Hayakawa, M., Perturbative analysis of infrared aspects of noncommutative QED on \(R^4\), Phys. Lett. B, 478, 394 (2000) · Zbl 1050.81719
[10] Grosse, H.; Wulkenhaar, R., Renormalisation of \(\phi^4\)-theory on noncommutative \(R^4\) in the matrix base, Commun. Math. Phys., 256, 305 (2005) · Zbl 1075.82005
[11] Grosse, H.; Steinacker, H., Renormalisation of the noncommutative \(\phi^3\) model through the Kontsevich model, Nucl. Phys. B, 746, 202 (2006) · Zbl 1178.81190
[12] Disertori, M.; Gurau, R.; Magnen, J.; Rivasseau, V., Vanishing of beta function of non commutative \(\phi(4)^4\) theory to all orders, Phys. Lett. B, 649, 95 (2007) · Zbl 1248.81253
[13] de Goursac, A.; Tanasa, A.; Wallet, J.-C., Vacuum configurations for renormalizable non-commutative scalar models, Eur. Phys. J. C, 53, 459 (2008) · Zbl 1189.81213
[14] Buric, M.; Madore, J., Geometry of the Grosse-Wulkenhaar model, J. High Energy Phys., 1003, Article 053 pp. (2010) · Zbl 1059.81608
[15] Lakhoua, A.; Vignes-Tourneret, F.; Wallet, J.-C., One-loop beta functions for the orientable non-commutative Gross-Neveu model, Eur. Phys. J. C, 52, 735 (2007) · Zbl 1189.81219
[16] Grosse, H.; Wulkenhaar, R., Self-dual noncommutative \(\varphi^4\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory (2012)
[17] Franco, N.; Wallet, J.-C., Metrics and causality on Moyal planes, Contemp. Math. (2016), in press · Zbl 1365.58005
[18] Jurić, T.; Meljanac, S.; Samsarov, A., Light-like \(κ\)-deformations and scalar field theory via Drinfeld twist, J. Phys. Conf. Ser., 634, 1, Article 012005 pp. (2015)
[19] Hammou, A. B.; Lagraa, M.; Sheikh-Jabbari, M. M., Coherent state induced star product on \(R_\lambda^3\) and the fuzzy sphere, Phys. Rev. D, 66, Article 025025 pp. (2002)
[20] Gracia-Bondía, J. M.; Lizzi, F.; Marmo, G.; Vitale, P., Infinitely many star products to play with, J. High Energy Phys., 04, Article 026 pp. (2002)
[21] Vitale, P.; Wallet, J.-C., Noncommutative field theories on \(R_\lambda^3\): toward UV/IR mixing freedom, J. High Energy Phys., 04, Article 115 pp. (2013) · Zbl 1342.81641
[22] Dubois-Violette, M., Lectures on graded differential algebras and noncommutative geometry, (Noncommutative Differential Geometry and Its Applications to Physics (2001), Springer: Springer Netherlands), 245-306 · Zbl 1038.58004
[23] Dubois-Violette, M.; Michor, P. W., Connections on central bimodules in noncommutative differential geometry, J. Geom. Phys., 20, 218 (1996) · Zbl 0867.53023
[24] Grosse, H.; Wohlgenannt, M., Induced gauge theory on a noncommutative space, Eur. Phys. J. C, 52, 435 (2007) · Zbl 1189.81217
[25] Gayral, V.; Wulkenhaar, R., Spectral geometry of the Moyal plane with harmonic propagation · Zbl 1295.46054
[26] Cagnache, E.; D’Andrea, F.; Martinetti, P.; Wallet, J.-C., The spectral distance on the Moyal plane, J. Geom. Phys., 61, 1881 (2011) · Zbl 1226.81095
[27] Wallet, J.-C., Connes distance by examples: homothetic spectral metric spaces, Rev. Math. Phys., 24, 1250027 (2012) · Zbl 1256.46040
[28] de Goursac, A.; Wallet, J.-C.; Wulkenhaar, R., On the vacuum states for noncommutative gauge theory, Eur. Phys. J. C, 56, 293-304 (2008) · Zbl 1189.81214
[29] Martinetti, P.; Vitale, P.; Wallet, J.-C., Noncommutative gauge theories on \(R_\theta^2\) as matrix models, J. High Energy Phys., 09, Article 051 pp. (2013) · Zbl 1342.81309
[30] Blaschke, D. N., A new approach to non-commutative \(U_\star(N)\) gauge fields, Europhys. Lett., 91, 11001 (2010)
[31] Blaschke, D. N.; Gieres, F.; Kronberger, E.; Schweda, M.; Wohlgenannt, M., Translation-invariant models for non-commutative gauge fields, J. Phys. A, 41, 252002 (2008) · Zbl 1192.81326
[32] Blaschke, D. N.; Grosse, H.; Wallet, J.-C., Slavnov-Taylor identities, non-commutative gauge theories and infrared divergences, J. High Energy Phys., 06, Article 038 pp. (2013) · Zbl 1342.81631
[33] Blaschke, D. N.; Kronberger, E.; Rofner, A.; Schweda, M.; Sedmik, R. I.P.; Wohlgenannt, M., On the problem of renormalizability in non-commutative gauge field models — a critical review, Fortschr. Phys., 58, 364 (2010), For a recent review, see · Zbl 1191.81200
[34] Aoki, H.; Ishibashi, N.; Iso, S.; Kawai, H.; Kitazawa, Y.; Tada, T., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B, 565, 176-192 (2000) · Zbl 0956.81089
[35] Steinacker, H., Non-commutative geometry and matrix models · Zbl 1255.83007
[36] Grosse, H.; Lizzi, F.; Steinacker, H., Noncommutative gauge theory and symmetry breaking in matrix models, Phys. Rev. D, 81, Article 085034 pp. (2010)
[37] Steinacker, H.; Szabo, R. J., Localization for Yang-Mills theory on the fuzzy sphere, Commun. Math. Phys., 278, 193 (2008) · Zbl 1156.81041
[38] Blaschke, D. N.; Steinacker, H.; Wohlgenannt, M., Heat kernel expansion and induced action for the matrix model Dirac operator, J. High Energy Phys., 03, Article 002 pp. (2011) · Zbl 1301.81105
[39] Géré, A.; Wallet, J.-C., Spectral theorem in noncommutative field theories: Jacobi dynamics, J. Phys. Conf. Ser., 634, Article 012006 pp. (2015)
[40] Géré, A.; Vitale, P.; Wallet, J.-C., Quantum gauge theories on noncommutative three-dimensional space, Phys. Rev. D, 90, Article 045019 pp. (2014)
[41] Alekseev, A. Y.; Recknagel, A.; Schomerus, V., Brane dynamics in background fluxes and non-commutative geometry, J. High Energy Phys., 05, Article 010 pp. (2000) · Zbl 0992.81061
[42] Géré, A.; Jurić, T.; Wallet, J.-C., Noncommutative gauge theories on \(R_\lambda^3\): perturbatively finite models, J. High Energy Phys., 12, Article 045 pp. (2015) · Zbl 1387.81266
[43] Koszul, J.-L., Lectures on Fiber Bundles and Differential Geometry, Tata Inst. Res. Fund. Lectures on Math., vol. 20 (1960), Tata Institute: Tata Institute Bombay
[44] de Goursac, A.; Masson, T.; Wallet, J.-C., Noncommutative \(ε\)-graded connections, J. Noncommut. Geom., 6, 343-387 (2012) · Zbl 1275.58003
[45] Woronowicz, S. L., Differential Calculus on compact matrix pseudogroups (compact groups), Commun. Math. Phys., 122, 125 (1998) · Zbl 0751.58042
[47] Wallet, J.-C., Algebraic setup for the gauge fixing of BF and super BF systems, Phys. Lett. B, 235, 71 (1990)
[48] Stora, R., Algebraic structure and topological origin of anomalies, (Lehmann, H., Recent Progress in Gauge Theories, 1983 Cargèse Lectures. Recent Progress in Gauge Theories, 1983 Cargèse Lectures, NATO ASI Series (1984), Plenum Press: Plenum Press New York)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.