×

Analysis of multipatch discontinuous Galerkin IgA approximations to elliptic boundary value problems. (English) Zbl 1388.65152

Summary: In this work, we study the approximation properties of multipatch dG-IgA methods, that apply the multipatch Isogeometric Analysis discretization concept and the discontinuous Galerkin technique on the interfaces between the patches, for solving linear diffusion problems with diffusion coefficients that may be discontinuous across the patch interfaces. The computational domain is divided into non-overlapping subdomains, called patches in IgA, where B-splines, or NURBS approximations spaces are constructed. The solution of the problem is approximated in every subdomain without imposing any matching grid conditions and without any continuity requirements for the discrete solution across the interfaces. Numerical fluxes with interior penalty jump terms are applied in order to treat the discontinuities of the discrete solution on the interfaces. We provide a rigorous a priori discretization error analysis for diffusion problems in two- and three-dimensional domains, where solutions patchwise belong to \(W^{l,p}\), with some \(l\geq 2\) and \(p\in ({2d}/{(d+2(l-1))},2]\). In any case, we show optimal convergence rates of the discretization with respect to the dG-norm.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Software:

FEATFLOW; IETI

References:

[1] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics, 2nd edn. ACADEMIC PRESS-imprint Elsevier Science, Netherlands (2003) · Zbl 1098.46001
[2] Apostolatos, A., Schmidt, R., Wüchner, R., Bletzinger, K.U.: A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Int. J. Numer. Methods Eng. 97(7), 1099-1142 (2014) · Zbl 1352.74315 · doi:10.1002/nme.4568
[3] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.L.: Unified analysis of discontinuous Galerkin methods for elliptic problem. SIAM J. Numer. Anal. 39(5), 1749-1779 (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[4] Bazilevs, Y., Hughes, T.J.R.: NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput. Mech. 43, 143-150 (2008) · Zbl 1171.76043 · doi:10.1007/s00466-008-0277-z
[5] Bazilevs, Y., da Veiga, L.B., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for \[h\] h-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031-1090 (2006) · Zbl 1103.65113 · doi:10.1142/S0218202506001455
[6] Brener, S.C., Scott, L.R.: The mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 3rd edn. Springer, New York (2008) · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[7] Brunero, F.: Discontinuous Galerkin methods for isogeometric analysis. Master’s thesis, Università degli Studi di Milano (2012)
[8] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications. North Holland Publishing Company, Amsterdam (1978) · Zbl 0383.65058
[9] Cotrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis. Toward Integration of CAD and FEA. Wiley, United Kingdom (2009) · Zbl 1378.65009 · doi:10.1002/9780470749081
[10] Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Math. 3(1), 76-85 (2003) · Zbl 1039.65079 · doi:10.2478/cmam-2003-0001
[11] Dryja, M., Galvis, J., Sarkis, M.: BDDC methods for discontinuous Galerkin discretization of elliptic problems. J. Complex. 23, 715-739 (2007) · Zbl 1133.65097 · doi:10.1016/j.jco.2007.02.003
[12] Evans, J.A., Hughes, T.J.R.: Isogeometric Divergence-conforming B-splines for the Darcy-Stokes-Brinkman equations. Math. Models Methods Appl. Sci. 23(4), 671-741 (2013) · Zbl 1355.76064 · doi:10.1142/S0218202512500583
[13] Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010) · Zbl 1194.35001
[14] Feng, X., Karakashian, O.A.: Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal 39(4), 1343-1365 (2001) · Zbl 1007.65104 · doi:10.1137/S0036142900378480
[15] Grisvard, P.: Elliptic Problems in Nonsmooth Domains in Classics in Applied Mathematics. SIAM, Philadelphia (2011) · Zbl 1231.35002 · doi:10.1137/1.9781611972030
[16] Heinrich, B., Nicaise, S.: The Nitsche mortar finite-element method for transmission problems with singularities. IMA J. Numer. Anal 23, 331-358 (2003) · Zbl 1027.65149 · doi:10.1093/imanum/23.2.331
[17] Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, New York (2000) · Zbl 1191.74002
[18] Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[19] Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Appl. Anal. 4, 101-129 (1975) · Zbl 0307.35038 · doi:10.1080/00036817408839086
[20] Kleiss, S.K., Pechstein, C., Jüttler, B., Tomar, S.: IETI - Isogeometric Tearing and Interconnecting. Comput. Methods Appl. Mech. Eng. 247-248, 201-215 (2012) · Zbl 1352.65628 · doi:10.1016/j.cma.2012.08.007
[21] Knees, D.: On the regularity of weak solutions of quasi-linear elliptic transmission problems on polyhedral domains. Z. Anal. Anwendungen 23(3), 509-546 (2004) · Zbl 1214.35010 · doi:10.4171/ZAA/1209
[22] Korneev, V.: Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti (Finite Element Schemes of high-order Accuracy). Izd-vo Leningradskogo gos. universiteta, Leningrad (1977). (in Russian) · Zbl 0481.65062
[23] Langer, U., Mantzaflaris, A., Moore, S.E., Toulopoulos, I.: Mesh grading in isogeometric analysis. Computers Math. Appl. 70(7), 1685-1700 (2015) · Zbl 1334.65194 · doi:10.1016/j.camwa.2015.03.011
[24] Langer, U., Moore, S.E.: Discontinuous Galerkin isogeometric analysis of elliptic PDEs on surfaces. NFN Technical Report 12, Johannes Kepler University Linz, NFN Geometry and Simulation, Linz (2014). Also available at http://arxiv.org/abs/1402.1185, and accepted for publication in the proceedings of the 22nd International Domain Decomposition Conference held at Lugano, Switzerland, September 2013 · Zbl 1339.65219
[25] Li, B.Q.: Discontinuous Finite Element in Fluid Dynamics and Heat Transfer. Computational Fluid and Solid Mechanics. Springer, New York (2006) · Zbl 1110.76001
[26] Pietro, D.A.D., Ern, A.: Analysis of a discontinuous Galerkin method for heterogeneous diffusion problems with low-regularity solutions. Numer. Methods Partial Differ. Equ. 28(4), 1161-1177 (2012) · Zbl 1267.65178 · doi:10.1002/num.20675
[27] Pietro, D.A.D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods (Mathmatiques et Applications), Mathmatiques et Applications. Springer, Berlin (2012) · Zbl 1231.65209
[28] Pigl, L.A., Tiller, W.: The NURBS Book, Monographs in Visual Communication, 2nd edn. Springer, Berlin (1997)
[29] Riviere, B.: Discontinuous Galerkin methods for Solving Elliptic and Parabolic Equations. SIAM, Society for Industrial and Applied Mathematics, Philadelphia (2008) · Zbl 1153.65112 · doi:10.1137/1.9780898717440
[30] Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. University Press, Cambridge, Cambridge (2007) · Zbl 1123.41008 · doi:10.1017/CBO9780511618994
[31] Toulopoulos, I.: An interior penalty discontinuous Galerkin finite element method for quasilinear parabolic problems. Finite Elements in Analysis and Design 95, 42-50 (2015) · doi:10.1016/j.finel.2014.11.001
[32] Turek, S.: Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2013) · Zbl 0930.76002
[33] da Veiga, L.B., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \[hpk-\] hpk- refinement in Isogeometric Analysis. Numer. Math. 118(7), 271-305 (2011) · Zbl 1222.41010 · doi:10.1007/s00211-010-0338-z
[34] da Veiga, L.B., Cho, D., Pavarino, L., Scacchi, S.: BDDC preconditioners for isogeometric analysis. Math. Models Methods Appl. Sci. 23(6), 1099-1142 (2013) · Zbl 1280.65138 · doi:10.1142/S0218202513500048
[35] Wihler, T.P., Riviere, B.: Discontinuous Galerkin methods for second-order elliptic PDE with low-regularity solutions. J. Sci. Comput. 46(2), 151-165 (2011) · Zbl 1228.65227 · doi:10.1007/s10915-010-9387-9
[36] Zlamál, M.: The finite element method in domains with curved boundaries. Int. J. Numer. Methods Eng. 5(3), 367-373 (1973) · Zbl 0254.65073 · doi:10.1002/nme.1620050307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.