×

Elastic curves and phase transitions. (English) Zbl 1436.49060

Summary: This paper is devoted to a classical variational problem for planar elastic curves of clamped endpoints, so-called Euler’s elastica problem. We investigate a straightening limit that means enlarging the distance of the endpoints, and obtain several new results concerning properties of least energy solutions. In particular we reach a first uniqueness result that assumes no symmetry. As a key ingredient we develop a foundational singular perturbation theory for the modified total squared curvature energy. It turns out that our energy has almost the same variational structure as a phase transition energy of Modica-Mortola type at the level of a first order singular limit.

MSC:

49S05 Variational principles of physics
74B05 Classical linear elasticity
49J40 Variational inequalities

References:

[1] Antman, SS, The influence of elasticity on analysis: modern developments, Bull. Amer. Math. Soc. (N.S.), 9, 3, 267-291 (1983) · Zbl 0533.73001 · doi:10.1090/S0273-0979-1983-15185-6
[2] Antman, SS, Nonlinear problems of elasticity (1995), New York: Springer-Verlag, New York · Zbl 0820.73002
[3] Ardentov, AA; Sachkov, YuL, Solution of Euler’s elastica problem, Autom. Remote Control, 70, 4, 633-643 (2009) · Zbl 1206.49019 · doi:10.1134/S0005117909040092
[4] Audoly, B.; Pomeau, Y., Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells (2010), Oxford: Oxford University Press, Oxford · Zbl 1223.74001
[5] Avvakumov, S.; Karpenkov, O.; Sossinsky, A., Euler elasticae in the plane and the Whitney-Graustein theorem, Russ. J. Math. Phys., 20, 3, 257-267 (2013) · Zbl 1287.57004 · doi:10.1134/S1061920813030011
[6] Bergner, M.; Dall’Acqua, A.; Fröhlich, S., Symmetric Willmore surfaces of revolution satisfying natural boundary conditions, Calc. Var. Part. Differ. Equ., 39, 3-4, 361-378 (2010) · Zbl 1207.49049 · doi:10.1007/s00526-010-0313-7
[7] Bernard, Y., Analysis of constrained Willmore surfaces, Commun. Part. Differ. Equ., 41, 10, 1513-1552 (2016) · Zbl 1356.35065 · doi:10.1080/03605302.2016.1222543
[8] Bernard, Y.; Rivière, T., Energy quantization for Willmore surfaces and applications, Ann. Math. (2), 180, 1, 87-136 (2014) · Zbl 1325.53014 · doi:10.4007/annals.2014.180.1.2
[9] Born, M.: Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum, unter verschiedenen Grenzbedingungen, PhD thesis, University of Göttingen, (1906) · JFM 38.0984.03
[10] Braides, A., Local minimization, variational evolution and \(\Gamma \)-convergence (2014), Cham: Springer, Cham · Zbl 1316.49002
[11] Brunnett, G.: A new characterization of plane elastica. In: Mathematical methods in computer aided geometric design, II. Academic Press, Boston, pp. 43-56 (1992)
[12] Bucur, D.; Henrot, A., A new isoperimetric inequality for the elasticae, J. Eur. Math. Soc., 19, 11, 3355-3376 (2017) · Zbl 1377.49047 · doi:10.4171/JEMS/740
[13] Caffarelli, LA; Córdoba, A., Uniform convergence of a singular perturbation problem, Commun. Pure Appl. Math., 48, 1, 1-12 (1995) · Zbl 0829.49013 · doi:10.1002/cpa.3160480101
[14] Carr, J.; Gurtin, ME; Slemrod, M., Structured phase transitions on a finite interval, Arch. Ration. Mech. Anal., 86, 4, 317-351 (1984) · Zbl 0564.76075 · doi:10.1007/BF00280031
[15] Cahn, JW; Hilliard, JE, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys, 28, 258-267 (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[16] Dall’Acqua, A., Uniqueness for the homogeneous Dirichlet Willmore boundary value problem, Ann. Global Anal. Geom., 42, 3, 411-420 (2012) · Zbl 1255.35008 · doi:10.1007/s10455-012-9320-6
[17] Dall’Acqua, A., Deckelnick, K.: An obstacle problem for elastic graphs, Preprint No. 2 Universität Magdeburg (2017), 20 pp · Zbl 1382.49003
[18] Dall’Acqua, A.; Deckelnick, K.; Grunau, H-C, Classical solutions to the Dirichlet problem for Willmore surfaces of revolution, Adv. Calc. Var., 1, 4, 379-397 (2008) · Zbl 1194.49060
[19] Dall’Acqua, A.; Deckelnick, K.; Wheeler, G., Unstable Willmore surfaces of revolution subject to natural boundary conditions, Calc. Var. Part. Differ. Equ., 48, 3-4, 293-313 (2013) · Zbl 1280.35061 · doi:10.1007/s00526-012-0551-y
[20] Dall’Acqua, A.; Fröhlich, S.; Grunau, H-C; Schieweck, F., Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data, Adv. Calc. Var., 4, 1, 1-81 (2011) · Zbl 1213.49050 · doi:10.1515/acv.2010.022
[21] Dal Maso, G., An introduction to \(\Gamma \)-convergence (1993), Boston: Birkhäuser, Boston · Zbl 0816.49001
[22] Dayrens, F.; Masnou, S.; Novaga, M., Existence, regularity and structure of confined elasticae, ESAIM Control Optim. Calc. Var., 24, 1, 25-43 (2018) · Zbl 1397.49020 · doi:10.1051/cocv/2016073
[23] Dall’Acqua, A.; Pluda, A., Some minimization problems for planar networks of elastic curves, Geom. Flows, 2, 105-124 (2017) · Zbl 1383.49017
[24] Dall’Acqua, A., Novaga, M., Pluda, A.: Minimal elastic networks, preprint. arXiv:1712.09589 · Zbl 1383.49017
[25] Deckelnick, K.; Grunau, H-C, Boundary value problems for the one-dimensional Willmore equation, Calc. Var. Part. Differ. Equ., 30, 3, 293-314 (2007) · Zbl 1127.53002 · doi:10.1007/s00526-007-0089-6
[26] Deckelnick, K.; Grunau, H-C, Stability and symmetry in the Navier problem for the one-dimensional Willmore equation, SIAM J. Math. Anal., 40, 5, 2055-2076 (2009) · Zbl 1177.53038 · doi:10.1137/07069033X
[27] Djondjorov, P., Hadzhilazova, M. Ts., Mladenov, I. M., Vassilev, V. M.: Explicit parameterization of Euler’s elastica, In: Geometry, integrability and quantization, Softex, Sofia, pp. 175-186 (2008) · Zbl 1196.53004
[28] Dondl, PW; Lemenant, A.; Wojtowytsch, S., Phase field models for thin elastic structures with topological constraint, Arch. Ration. Mech. Anal., 223, 2, 693-736 (2017) · Zbl 1366.35182 · doi:10.1007/s00205-016-1043-6
[29] Dondl, PW; Mugnai, L.; Röger, M., Confined elastic curves, SIAM J. Appl. Math., 71, 6, 2205-2226 (2011) · Zbl 1246.49036 · doi:10.1137/100805339
[30] Eichmann, S.; Koeller, A., Symmetry for Willmore surfaces of revolution, J. Geom. Anal., 27, 1, 618-642 (2017) · Zbl 1364.34027 · doi:10.1007/s12220-016-9692-0
[31] Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimitrici latissimo sensu accepti, Marcum-Michaelem Bousquet & socios, Lausanne, Geneva, (1744) · Zbl 0788.01072
[32] Ferone, V.; Kawohl, B.; Nitsch, C., The elastica problem under area constraint, Math. Ann., 365, 3-4, 987-1015 (2016) · Zbl 1345.49049 · doi:10.1007/s00208-015-1284-y
[33] Fraser, CG, Mathematical technique and physical conception in Euler’s investigation of the elastica, Centaurus, 34, 3, 211-246 (1991) · Zbl 0752.01005 · doi:10.1111/j.1600-0498.1991.tb00695.x
[34] Gabutti, B.; Lepora, P.; Merlo, G., A bifurcation problem involving elastica, Meccanica, 15, 154-165 (1980) · Zbl 0456.73036 · doi:10.1007/BF02128926
[35] Gage, ME, An isoperimetric inequality with applications to curve shortening, Duke Math. J., 50, 4, 1225-1229 (1983) · Zbl 0534.52008 · doi:10.1215/S0012-7094-83-05052-4
[36] Gerlach, H.; Reiter, P.; von der Mosel, H., The Elastic Trefoil is the Doubly Covered Circle, Arch. Ration. Mech. Anal., 225, 1, 89-139 (2017) · Zbl 1385.53002 · doi:10.1007/s00205-017-1100-9
[37] Gonzalez, O.; Maddocks, JH; Schuricht, F.; von der Mosel, H., Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Part. Diff. Equ., 14, 1, 29-68 (2002) · Zbl 1006.49001 · doi:10.1007/s005260100089
[38] Grunau, H.-C.: The asymptotic shape of a boundary layer of symmetric Willmore surfaces of revolution, In: Inequalities and applications 2010, International Series of Numerical Mathematics 161, Springer, Basel, pp. 19-29 (2012) · Zbl 1253.49032
[39] Hutchinson, JE; Tonegawa, Y., Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var. Part. Differ. Equ., 10, 1, 49-84 (2000) · Zbl 1070.49026 · doi:10.1007/PL00013453
[40] Jin, M.; Bao, ZB, An improved proof of instability of some Euler elasticas, J. Elast., 121, 2, 303-308 (2015) · Zbl 1325.74085 · doi:10.1007/s10659-015-9529-2
[41] Keller, LGA; Mondino, A.; Rivière, T., Embedded surfaces of arbitrary genus minimizing the Willmore energy under isoperimetric constraint, Arch. Ration. Mech. Anal., 212, 2, 645-682 (2014) · Zbl 1292.49039 · doi:10.1007/s00205-013-0694-9
[42] Kemmochi, T.: Numerical analysis of elastica with obstacle and adhesion effects. Appl. Anal. 10.1080/00036811.2017.1416100 (in press) · Zbl 1409.74016
[43] Koiso, N., Elasticae in a Riemannian submanifold, Osaka J. Math., 29, 3, 539-543 (1992) · Zbl 0777.53041
[44] Kuwert, E., Schätzle, R.: The Willmore functional, In: Topics in modern regularity theory, CRM Series, 13, Ed. Norm., Pisa, pp. 1-115 (2012) · Zbl 1322.53002
[45] Langer, J.; Singer, DA, The total squared curvature of closed curves, J. Differ. Geom., 20, 1, 1-22 (1984) · Zbl 0554.53013 · doi:10.4310/jdg/1214438990
[46] Langer, J.; Singer, DA, Knotted elastic curves in \({\mathbb{R}}^3 \), J. Lond. Math. Soc. (2), 30, 3, 512-520 (1984) · Zbl 0595.53001 · doi:10.1112/jlms/s2-30.3.512
[47] Langer, J.; Singer, DA, Curve straightening and a minimax argument for closed elastic curves, Topology, 24, 1, 75-88 (1985) · Zbl 0561.53004 · doi:10.1016/0040-9383(85)90046-1
[48] Lawden, DF, Elliptic functions and applications (1989), New York: Springer-Verlag, New York · Zbl 0689.33001
[49] Levien, R.: The elastica: a mathematical history, Technical Report No. UCB/EECS-2008-10, University of California, Berkeley, (2008)
[50] Linnér, A., Existence of free nonclosed Euler-Bernoulli elastica, Nonlinear Anal., 21, 8, 575-593 (1993) · Zbl 0809.53006 · doi:10.1016/0362-546X(93)90002-A
[51] Linnér, A., Unified representations of nonlinear splines, J. Approx. Theory, 84, 3, 315-350 (1996) · Zbl 0858.41004 · doi:10.1006/jath.1996.0022
[52] Linnér, A., Curve-straightening and the Palais-Smale condition, Trans. Am. Math. Soc., 350, 9, 3743-3765 (1998) · Zbl 0921.58008 · doi:10.1090/S0002-9947-98-01977-1
[53] Linnér, A., Explicit elastic curves, Ann. Global Anal. Geom., 16, 5, 445-475 (1998) · Zbl 0915.53003 · doi:10.1023/A:1006526817291
[54] Linnér, A.; Jerome, JW, A unique graph of minimal elastic energy, Trans. Am. Math. Soc., 359, 5, 2021-2041 (2007) · Zbl 1110.58009 · doi:10.1090/S0002-9947-06-04315-7
[55] Love, AEH, A treatise on the mathematical theory of elasticity (1944), New York: Dover Publications, New York · Zbl 0063.03651
[56] Maddocks, JH, Stability of nonlinearly elastic rods, Arch. Ration. Mech. Anal., 85, 4, 311-354 (1984) · Zbl 0545.73039 · doi:10.1007/BF00275737
[57] Mandel, R., Boundary value problems for Willmore curves in \({\mathbb{R}}^2\), Calc. Var. Part. Differ. Equ., 54, 4, 3905-3925 (2015) · Zbl 1362.53010 · doi:10.1007/s00526-015-0925-z
[58] Mandel, R., Explicit formulas and symmetry breaking for Willmore surfaces of revolution, Ann. Global Anal. Geom., 54, 2, 187-236 (2018) · Zbl 1402.53002 · doi:10.1007/s10455-018-9598-0
[59] Manning, RS, A catalogue of stable equilibria of planar extensible or inextensible elastic rods for all possible Dirichlet boundary conditions, J. Elast., 115, 2, 105-130 (2014) · Zbl 1411.74034 · doi:10.1007/s10659-013-9449-y
[60] Marques, FC; Neves, A., Min-max theory and the Willmore conjecture, Ann. Math. (2), 179, 2, 683-782 (2014) · Zbl 1297.49079 · doi:10.4007/annals.2014.179.2.6
[61] Matsutani, S., Euler’s elastica and beyond, J. Geom. Symmetry Phys., 17, 45-86 (2010) · Zbl 1209.37086
[62] Miura, T.: Singular perturbation by bending for an adhesive obstacle problem. Calc. Var. Part. Differ. Equ. 10.1007/s00526-015-0941-z (in press) · Zbl 1343.35014
[63] Miura, T., Overhanging of membranes adhering to periodic graph substrates, Phys. D, 355, 34-44 (2017) · Zbl 1378.74040 · doi:10.1016/j.physd.2017.06.002
[64] Mladenov, IM; Hadzhilazova, M., The many faces of elastica (2017), Cham: Springer, Cham · Zbl 1398.53008
[65] Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., 98, 2, 123-142 (1987) · Zbl 0616.76004 · doi:10.1007/BF00251230
[66] Modica, L.; Mortola, S., Un esempio di \(\varGamma^-\)-convergenza, Boll. Un. Mat. Ital. B (5), 14, 1, 285-299 (1977) · Zbl 0356.49008
[67] Ni, W-M; Pan, X-B; Takagi, I., Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J., 67, 1, 1-20 (1992) · Zbl 0785.35041 · doi:10.1215/S0012-7094-92-06701-9
[68] Ni, W-M; Takagi, I., On the shape of least-energy solutions to a semilinear Neumann problem, Commun. Pure Appl. Math., 44, 7, 819-851 (1991) · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[69] Ni, W-M; Takagi, I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70, 2, 247-281 (1993) · Zbl 0796.35056 · doi:10.1215/S0012-7094-93-07004-4
[70] Nitsche, JCC, Boundary value problems for variational integrals involving surface curvatures, Q. Appl. Math., 51, 363-387 (1993) · Zbl 0785.35027 · doi:10.1090/qam/1218374
[71] Novaga, M.; Okabe, S., Convergence to equilibrium of gradient flows defined on planar curves, J. Reine Angew. Math., 733, 87-119 (2017) · Zbl 1456.53078
[72] Röger, M.; Schätzle, R., On a modified conjecture of De Giorgi, Math. Z., 254, 4, 675-714 (2006) · Zbl 1126.49010 · doi:10.1007/s00209-006-0002-6
[73] Sachkov, YuL, Maxwell strata in the Euler elastic problem, J. Dyn. Control Syst., 14, 2, 169-234 (2008) · Zbl 1203.49004 · doi:10.1007/s10883-008-9039-7
[74] Sachkov, YuL, Conjugate points in the Euler elastic problem, J. Dyn. Control Syst., 14, 3, 409-439 (2008) · Zbl 1203.49005 · doi:10.1007/s10883-008-9044-x
[75] Sachkov, YuL, Closed Euler elasticae, Proc. Steklov Inst. Math., 278, 1, 218-232 (2012) · Zbl 1334.70030 · doi:10.1134/S0081543812060211
[76] Sachkov, YuL; Sachkova, EF, Exponential mapping in Euler’s elastic problem, J. Dyn. Control Syst., 20, 4, 443-464 (2014) · Zbl 1309.49005 · doi:10.1007/s10883-014-9211-1
[77] Sachkov, YuL; Levyakov, SV, Stability of inflectional elasticae centered at vertices or inflection points, Proc. Steklov Inst. Math., 271, 1, 177-192 (2010) · Zbl 1302.74091 · doi:10.1134/S0081543810040140
[78] Schätzle, R., The Willmore boundary problem, Calc. Var. Part. Differ. Equ., 37, 3-4, 275-302 (2010) · Zbl 1188.53006 · doi:10.1007/s00526-009-0244-3
[79] Singer, D. A.: Lectures on elastic curves and rods, In: Curvature and variational modeling in physics and biophysics, Vol. 1002, Amer. Inst. Phys., Melville, NY, (pp. 3-32) (2008)
[80] Sternberg, P., The effect of a singular perturbation on nonconvex variational problems, Arch. Ration. Mech. Anal., 101, 3, 209-260 (1988) · Zbl 0647.49021 · doi:10.1007/BF00253122
[81] Truesdell, C., The influence of elasticity on analysis: the classic heritage, Bull. Amer. Math. Soc. (N.S.), 9, 3, 293-310 (1983) · Zbl 0555.73030 · doi:10.1090/S0273-0979-1983-15187-X
[82] van der Waals, JD, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J Stat. Phys., 20, 200-244 (1979) · Zbl 1245.82006 · doi:10.1007/BF01011514
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.