×

Explicit formulas, symmetry and symmetry breaking for Willmore surfaces of revolution. (English) Zbl 1402.53002

Summary: In this paper, we prove explicit formulas for all Willmore surfaces of revolution and demonstrate their use in the discussion of the associated Dirichlet boundary value problems. It is shown by an explicit example that symmetric Dirichlet boundary conditions do in general not entail the symmetry of the surface. In addition, we prove a symmetry result for a subclass of Willmore surfaces satisfying symmetric Dirichlet boundary data.

MSC:

53A05 Surfaces in Euclidean and related spaces
53A30 Conformal differential geometry (MSC2010)
34B15 Nonlinear boundary value problems for ordinary differential equations
49Q10 Optimization of shapes other than minimal surfaces

References:

[1] Bergner, M; Dall’Acqua, A; Fröhlich, S, Symmetric Willmore surfaces of revolution satisfying natural boundary conditions, Calc. Var. Partial Differ. Equ., 39, 361-378, (2010) · Zbl 1207.49049 · doi:10.1007/s00526-010-0313-7
[2] Bryant, R; Griffiths, P, Reduction for constrained variational problems and \(∫ {1\over 2}k^2\, ds\), Am. J. Math., 108, 525-570, (1986) · Zbl 0604.58022 · doi:10.2307/2374654
[3] Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Physicists. Springer, Berlin (1954) · Zbl 0055.11905 · doi:10.1007/978-3-642-52803-3
[4] Dall’Acqua, A; Deckelnick, K; Grunau, H-C, Classical solutions to the Dirichlet problem for Willmore surfaces of revolution, Adv. Calc. Var., 1, 379-397, (2008) · Zbl 1194.49060
[5] Dall’Acqua, A; Fröhlich, S; Grunau, H-C; Schieweck, F, Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data, Adv. Calc. Var., 4, 1-81, (2011) · Zbl 1213.49050 · doi:10.1515/acv.2010.022
[6] Deckelnick, K; Grunau, H-C, Boundary value problems for the one-dimensional Willmore equation, Calc. Var. Partial Differ. Equ., 30, 293-314, (2007) · Zbl 1127.53002 · doi:10.1007/s00526-007-0089-6
[7] Eichmann, S, Nonuniqueness for Willmore surfaces of revolution satisfying Dirichlet boundary data, J. Geom. Anal., 26, 2563-2590, (2016) · Zbl 1353.53065 · doi:10.1007/s12220-015-9639-x
[8] Eichmann, S.: Willmore surfaces of revolution satisfying Dirichlet data. Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg (2017). https://www.lhmdb.gbv.de/DB=1/SET=1/TTL=1/SHW?FRST=1 · Zbl 1353.53065
[9] Eichmann, S., Grunau, H.-C.: Existence for Willmore surfaces of revolution satisfying non-symmetric Dirichlet boundary conditions In: Advances in calculus of variations, de Gruyter, Berlin, (2017). https://doi.org/10.1515/acv-2016-0038
[10] Eichmann, S; Koeller, A, Symmetry for Willmore surfaces of revolution, J. Geom. Anal., 27, 618-642, (2017) · Zbl 1364.34027 · doi:10.1007/s12220-016-9692-0
[11] Halphen, G.-H.: Traité des fonctions elliptiques et de leurs applications, partie 2. Gauthier-Villars, Paris (1986-1891)
[12] Hermite, C, Extrait d’une lettre de M. ch. Hermite adressée à M. L. Fuchs, J. Reine Angew. Math., 82, 343-347, (1877)
[13] Hertrich-Jeromin, U; Pinkall, U, Ein beweis der willmoreschen vermutung für kanaltori, J. Reine Angew. Math., 430, 21-34, (1992) · Zbl 0749.53040
[14] Ince, EL, The periodic Lamé functions, Proc. R. Soc. Edinb., 60, 47-63, (1940) · JFM 66.0324.05 · doi:10.1017/S0370164600020058
[15] Ivey, TA; Singer, DA, Knot types, homotopies and stability of closed elastic rods, Proc. Lond. Math. Soc. (3), 79, 429-450, (1999) · Zbl 1036.53001 · doi:10.1112/S0024611599011983
[16] Langer, J; Singer, D, Curves in the hyperbolic plane and mean curvature of tori in \(3\)-space, Bull. Lond. Math. Soc., 16, 531-534, (1984) · Zbl 0554.53014 · doi:10.1112/blms/16.5.531
[17] Langer, J; Singer, DA, Knotted elastic curves in \({ R}^3\), J. Lond. Math. Soc. (2), 30, 512-520, (1984) · Zbl 0595.53001 · doi:10.1112/jlms/s2-30.3.512
[18] Langer, J; Singer, DA, The total squared curvature of closed curves, J. Differ. Geom., 20, 1-22, (1984) · Zbl 0554.53013 · doi:10.4310/jdg/1214438990
[19] Li, P; Yau, ST, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69, 269-291, (1982) · Zbl 0503.53042 · doi:10.1007/BF01399507
[20] Mandel, R, Boundary value problems for Willmore curves in \(\mathbb{R}^2\), Calc. Var. Partial Differ. Equ., 54, 3905-3925, (2015) · Zbl 1362.53010 · doi:10.1007/s00526-015-0925-z
[21] Marques, FC; Neves, A, MIN-MAX theory and the Willmore conjecture, Ann. Math. (2), 179, 683-782, (2014) · Zbl 1297.49079 · doi:10.4007/annals.2014.179.2.6
[22] Mondino, A; Nguyen, HT, A gap theorem for Willmore tori and an application to the Willmore flow, Nonlinear Anal., 102, 220-225, (2014) · Zbl 1286.53012 · doi:10.1016/j.na.2014.02.015
[23] Schätzle, R, The Willmore boundary problem, Calc. Var. Partial Differ. Equ., 37, 275-302, (2010) · Zbl 1188.53006 · doi:10.1007/s00526-009-0244-3
[24] Valent, G.: Heun functions versus elliptic functions. In: Difference Equations. Special Functions and Orthogonal Polynomials, pp. 664-686. World Scientific Publishing, Hackensack, NJ (2007). https://doi.org/10.1142/9789812770752_0057 · Zbl 1125.33017
[25] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996) · doi:10.1017/CBO9780511608759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.