Skip to main content

Advertisement

Log in

Elastic curves and phase transitions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper is devoted to a classical variational problem for planar elastic curves of clamped endpoints, so-called Euler’s elastica problem. We investigate a straightening limit that means enlarging the distance of the endpoints, and obtain several new results concerning properties of least energy solutions. In particular we reach a first uniqueness result that assumes no symmetry. As a key ingredient we develop a foundational singular perturbation theory for the modified total squared curvature energy. It turns out that our energy has almost the same variational structure as a phase transition energy of Modica–Mortola type at the level of a first order singular limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Antman, S.S.: The influence of elasticity on analysis: modern developments. Bull. Amer. Math. Soc. (N.S.) 9(3), 267–291 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antman, S.S.: Nonlinear problems of elasticity. Springer-Verlag, New York (1995)

    Book  MATH  Google Scholar 

  3. Ardentov, A.A., Sachkov, YuL: Solution of Euler’s elastica problem. Autom. Remote Control 70(4), 633–643 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  5. Avvakumov, S., Karpenkov, O., Sossinsky, A.: Euler elasticae in the plane and the Whitney–Graustein theorem. Russ. J. Math. Phys. 20(3), 257–267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergner, M., Dall’Acqua, A., Fröhlich, S.: Symmetric Willmore surfaces of revolution satisfying natural boundary conditions. Calc. Var. Part. Differ. Equ. 39(3–4), 361–378 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernard, Y.: Analysis of constrained Willmore surfaces. Commun. Part. Differ. Equ. 41(10), 1513–1552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernard, Y., Rivière, T.: Energy quantization for Willmore surfaces and applications. Ann. Math. (2) 180(1), 87–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Born, M.: Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum, unter verschiedenen Grenzbedingungen, PhD thesis, University of Göttingen, (1906)

  10. Braides, A.: Local minimization, variational evolution and \(\Gamma \)-convergence. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  11. Brunnett, G.: A new characterization of plane elastica. In: Mathematical methods in computer aided geometric design, II. Academic Press, Boston, pp. 43–56 (1992)

  12. Bucur, D., Henrot, A.: A new isoperimetric inequality for the elasticae. J. Eur. Math. Soc. 19(11), 3355–3376 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L.A., Córdoba, A.: Uniform convergence of a singular perturbation problem. Commun. Pure Appl. Math. 48(1), 1–12 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carr, J., Gurtin, M.E., Slemrod, M.: Structured phase transitions on a finite interval. Arch. Ration. Mech. Anal. 86(4), 317–351 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys 28, 258–267 (1958)

    Article  MATH  Google Scholar 

  16. Dall’Acqua, A.: Uniqueness for the homogeneous Dirichlet Willmore boundary value problem. Ann. Global Anal. Geom. 42(3), 411–420 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dall’Acqua, A., Deckelnick, K.: An obstacle problem for elastic graphs, Preprint No. 2 Universität Magdeburg (2017), 20 pp

  18. Dall’Acqua, A., Deckelnick, K., Grunau, H.-C.: Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Var. 1(4), 379–397 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Dall’Acqua, A., Deckelnick, K., Wheeler, G.: Unstable Willmore surfaces of revolution subject to natural boundary conditions. Calc. Var. Part. Differ. Equ. 48(3–4), 293–313 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dall’Acqua, A., Fröhlich, S., Grunau, H.-C., Schieweck, F.: Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4(1), 1–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dal Maso, G.: An introduction to \(\Gamma \)-convergence. Birkhäuser, Boston (1993)

    Book  Google Scholar 

  22. Dayrens, F., Masnou, S., Novaga, M.: Existence, regularity and structure of confined elasticae. ESAIM Control Optim. Calc. Var. 24(1), 25–43 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dall’Acqua, A., Pluda, A.: Some minimization problems for planar networks of elastic curves. Geom. Flows 2, 105–124 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Dall’Acqua, A., Novaga, M., Pluda, A.: Minimal elastic networks, preprint. arXiv:1712.09589

  25. Deckelnick, K., Grunau, H.-C.: Boundary value problems for the one-dimensional Willmore equation. Calc. Var. Part. Differ. Equ. 30(3), 293–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deckelnick, K., Grunau, H.-C.: Stability and symmetry in the Navier problem for the one-dimensional Willmore equation. SIAM J. Math. Anal. 40(5), 2055–2076 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Djondjorov, P., Hadzhilazova, M. Ts., Mladenov, I. M., Vassilev, V. M.: Explicit parameterization of Euler’s elastica, In: Geometry, integrability and quantization, Softex, Sofia, pp. 175–186 (2008)

  28. Dondl, P.W., Lemenant, A., Wojtowytsch, S.: Phase field models for thin elastic structures with topological constraint. Arch. Ration. Mech. Anal. 223(2), 693–736 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dondl, P.W., Mugnai, L., Röger, M.: Confined elastic curves. SIAM J. Appl. Math. 71(6), 2205–2226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eichmann, S., Koeller, A.: Symmetry for Willmore surfaces of revolution. J. Geom. Anal. 27(1), 618–642 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimitrici latissimo sensu accepti, Marcum-Michaelem Bousquet & socios, Lausanne, Geneva, (1744)

  32. Ferone, V., Kawohl, B., Nitsch, C.: The elastica problem under area constraint. Math. Ann. 365(3–4), 987–1015 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fraser, C.G.: Mathematical technique and physical conception in Euler’s investigation of the elastica. Centaurus 34(3), 211–246 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gabutti, B., Lepora, P., Merlo, G.: A bifurcation problem involving elastica. Meccanica 15, 154–165 (1980)

    Article  MATH  Google Scholar 

  35. Gage, M.E.: An isoperimetric inequality with applications to curve shortening. Duke Math. J. 50(4), 1225–1229 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gerlach, H., Reiter, P., von der Mosel, H.: The Elastic Trefoil is the Doubly Covered Circle. Arch. Ration. Mech. Anal. 225(1), 89–139 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gonzalez, O., Maddocks, J.H., Schuricht, F., von der Mosel, H.: Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. Part. Diff. Equ. 14(1), 29–68 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Grunau, H.-C.: The asymptotic shape of a boundary layer of symmetric Willmore surfaces of revolution, In: Inequalities and applications 2010, International Series of Numerical Mathematics 161, Springer, Basel, pp. 19–29 (2012)

  39. Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Part. Differ. Equ. 10(1), 49–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jin, M., Bao, Z.B.: An improved proof of instability of some Euler elasticas. J. Elast. 121(2), 303–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Keller, L.G.A., Mondino, A., Rivière, T.: Embedded surfaces of arbitrary genus minimizing the Willmore energy under isoperimetric constraint. Arch. Ration. Mech. Anal. 212(2), 645–682 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kemmochi, T.: Numerical analysis of elastica with obstacle and adhesion effects. Appl. Anal. https://doi.org/10.1080/00036811.2017.1416100 (in press)

  43. Koiso, N.: Elasticae in a Riemannian submanifold. Osaka J. Math. 29(3), 539–543 (1992)

    MathSciNet  MATH  Google Scholar 

  44. Kuwert, E., Schätzle, R.: The Willmore functional, In: Topics in modern regularity theory, CRM Series, 13, Ed. Norm., Pisa, pp. 1–115 (2012)

  45. Langer, J., Singer, D.A.: The total squared curvature of closed curves. J. Differ. Geom. 20(1), 1–22 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  46. Langer, J., Singer, D.A.: Knotted elastic curves in \({\mathbb{R}}^{3}\). J. Lond. Math. Soc. (2) 30(3), 512–520 (1984)

    Article  MATH  Google Scholar 

  47. Langer, J., Singer, D.A.: Curve straightening and a minimax argument for closed elastic curves. Topology 24(1), 75–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lawden, D.F.: Elliptic functions and applications. Springer-Verlag, New York (1989)

    Book  MATH  Google Scholar 

  49. Levien, R.: The elastica: a mathematical history, Technical Report No. UCB/EECS-2008-10, University of California, Berkeley, (2008)

  50. Linnér, A.: Existence of free nonclosed Euler-Bernoulli elastica. Nonlinear Anal. 21(8), 575–593 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Linnér, A.: Unified representations of nonlinear splines. J. Approx. Theory 84(3), 315–350 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  52. Linnér, A.: Curve-straightening and the Palais-Smale condition. Trans. Am. Math. Soc. 350(9), 3743–3765 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Linnér, A.: Explicit elastic curves. Ann. Global Anal. Geom. 16(5), 445–475 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Linnér, A., Jerome, J.W.: A unique graph of minimal elastic energy. Trans. Am. Math. Soc. 359(5), 2021–2041 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Love, A.E.H.: A treatise on the mathematical theory of elasticity, 4th edn. Dover Publications, New York (1944)

    MATH  Google Scholar 

  56. Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85(4), 311–354 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mandel, R.: Boundary value problems for Willmore curves in \({\mathbb{R}}^2\). Calc. Var. Part. Differ. Equ. 54(4), 3905–3925 (2015)

    Article  MATH  Google Scholar 

  58. Mandel, R.: Explicit formulas and symmetry breaking for Willmore surfaces of revolution. Ann. Global Anal. Geom. 54(2), 187–236 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Manning, R.S.: A catalogue of stable equilibria of planar extensible or inextensible elastic rods for all possible Dirichlet boundary conditions. J. Elast. 115(2), 105–130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. (2) 179(2), 683–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Matsutani, S.: Euler’s elastica and beyond. J. Geom. Symmetry Phys. 17, 45–86 (2010)

    MathSciNet  MATH  Google Scholar 

  62. Miura, T.: Singular perturbation by bending for an adhesive obstacle problem. Calc. Var. Part. Differ. Equ. https://doi.org/10.1007/s00526-015-0941-z (in press)

  63. Miura, T.: Overhanging of membranes adhering to periodic graph substrates. Phys. D 355, 34–44 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  64. Mladenov, I.M., Hadzhilazova, M.: The many faces of elastica. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  65. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  66. Modica, L., Mortola, S.: Un esempio di \(\varGamma ^-\)-convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285–299 (1977)

    MathSciNet  MATH  Google Scholar 

  67. Ni, W.-M., Pan, X.-B., Takagi, I.: Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents. Duke Math. J. 67(1), 1–20 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  68. Ni, W.-M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44(7), 819–851 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ni, W.-M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70(2), 247–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  70. Nitsche, J.C.C.: Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51, 363–387 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  71. Novaga, M., Okabe, S.: Convergence to equilibrium of gradient flows defined on planar curves. J. Reine Angew. Math. 733, 87–119 (2017)

    MathSciNet  MATH  Google Scholar 

  72. Röger, M., Schätzle, R.: On a modified conjecture of De Giorgi. Math. Z. 254(4), 675–714 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sachkov, YuL: Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst. 14(2), 169–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  74. Sachkov, YuL: Conjugate points in the Euler elastic problem. J. Dyn. Control Syst. 14(3), 409–439 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Sachkov, YuL: Closed Euler elasticae. Proc. Steklov Inst. Math. 278(1), 218–232 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sachkov, YuL, Sachkova, E.F.: Exponential mapping in Euler’s elastic problem. J. Dyn. Control Syst. 20(4), 443–464 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. Sachkov, YuL, Levyakov, S.V.: Stability of inflectional elasticae centered at vertices or inflection points. Proc. Steklov Inst. Math. 271(1), 177–192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  78. Schätzle, R.: The Willmore boundary problem. Calc. Var. Part. Differ. Equ. 37(3–4), 275–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  79. Singer, D. A.: Lectures on elastic curves and rods, In: Curvature and variational modeling in physics and biophysics, Vol. 1002, Amer. Inst. Phys., Melville, NY, (pp. 3–32) (2008)

  80. Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101(3), 209–260 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  81. Truesdell, C.: The influence of elasticity on analysis: the classic heritage. Bull. Amer. Math. Soc. (N.S.) 9(3), 293–310 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  82. van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat. Phys. 20, 200–244 (1979). (Translated version of: J. D. van der Waals, Thermodynamische Theorie der Kapillarität unter Voraussetzung Stetiger Dichteänderung, Zeitschrift für Physikalische Chemie 13 (1894), 657–725.)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Yoshikazu Giga, Professor Yasuhito Miyamoto, Professor Michiaki Onodera, and Dr. Olivier Pierre-Louis for their helpful comments and discussion. In particular, Professor Miyamoto indicated to the author that our study is related to the works by Ni and Takagi. The author learned of Audoly and Pomeau’s book from Dr. Pierre-Louis, and found a description related to our study. The author would also like thank anonymous referees for their careful reading and useful comments. This work is mainly carried out at the University of Tokyo and partly at the Max Planck Institute for Mathematics in the Sciences. This work is partially supported by JSPS KAKENHI Grant Numbers JP15J05166, JP18J30004, and also the Program for Leading Graduate Schools, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Miura.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Existence of minimizers

Fix \(l>0\) and \(\theta _0,\theta _1\in [-\pi ,\pi ]\). We say that \(\gamma \in H^2(I;{\mathbb {R}}^2)\subset C^1({\bar{I}};{\mathbb {R}}^2)\) is \(H^2\)-admissible if \(\gamma \) is of constant speed and satisfying the boundary condition (2.1). We denote the set of \(H^2\)-admissible curves by \({\mathcal {X}}\). Note that the \(H^2\)-weak topology is stronger than \(C^1\)-topology; hence, in particular, the set \({\mathcal {X}}\) is \(H^2\)-weakly closed in \(H^2(I;{\mathbb {R}}^2)\).

In this \(H^2\)-framework we have an existence theorem of standard type: Let \({\mathcal {X}}'\subset {\mathcal {X}}\) be an \(H^2\)-weakly closed subset. Then the functional \({\mathcal {E}}_\varepsilon =\varepsilon ^2{\mathcal {B}}+{\mathcal {L}}\) defined on \({\mathcal {X}}'\) attains its minimum in \({\mathcal {X}}'\).

The proof is straightforward. Since any \(\gamma \in {\mathcal {X}}'\) is of constant speed, we have the following representations:

$$\begin{aligned} {\mathcal {L}}[\gamma ]\equiv |{\dot{\gamma }}|\ge l, \quad {\mathcal {B}}[\gamma ]=\frac{1}{{\mathcal {L}}[\gamma ]^3}\int _I|\ddot{\gamma }(t)|^2dt. \end{aligned}$$

By the above relations and the boundary condition, we find that a minimizing sequence is \(H^2\)-bounded. Since \({\mathcal {E}}_\varepsilon \) is lower semicontinuous with respect to the \(H^2\)-weak topology, a standard direct method implies the existence of a minimizer, completing the proof.

Moreover, if \({\mathcal {X}}'\) admits any local perturbation, then we find that any minimizer \(\gamma \in {\mathcal {X}}'\) is of class \(C^\infty \) by a bootstrap argument. In particular, the problem (2.2) admits a smooth minimizer. Using the Lagrange multiplier method to modify the length constraint, we find that the problem (2.4) also admits a smooth minimizer. One may also refer to [52, Theorem 2.2] for a different argument.

In addition, it is also proved that there are infinitely many local minimizers with different winding numbers in a sense. Here \(\gamma \in {\mathcal {X}}\) is a local minimizer of the energy \({\mathcal {E}}_\varepsilon \) if there is \(\delta >0\) such that \({\mathcal {E}}_\varepsilon [\gamma ]\le {\mathcal {E}}_\varepsilon [\gamma ']\) for any \(\gamma '\in {\mathcal {X}}\) with \(\Vert \gamma -\gamma '\Vert _{H^2}\le \delta \). To state the above fact, we use a kind of winding number; for \(\gamma \in {\mathcal {X}}\) we define \({\mathcal {N}}[\gamma ]\in {\mathbb {Z}}\) as

$$\begin{aligned} {\mathcal {N}}[\gamma ]=\frac{1}{2\pi }\left( \int _{\gamma }\kappa ds + \theta _0-\theta _1\right) , \end{aligned}$$

where \(\kappa \) is the counterclockwise signed curvature (\(\kappa =\partial _s\vartheta _{{\tilde{\gamma }}}\)). We notice that the functional \({\mathcal {N}}\) is \({\mathbb {Z}}\)-valued and continuous with respect to the \(H^2\)-weak and -strong topologies. Thus for any \(m\in {\mathbb {Z}}\) the set \({\mathcal {X}}_m=\{\gamma \in {\mathcal {X}} \mid {\mathcal {N}}[\gamma ]=m \}\) is open and closed in \({\mathcal {X}}\) both weakly and strongly. Since \({\mathcal {X}}_m\) is weakly closed, the energies \({\mathcal {E}}_\varepsilon \) defined on \({\mathcal {X}}_m\) and \({\mathcal {B}}\) defined on \({\mathcal {X}}_m\cap {\mathcal {X}}^L\) attain their minimizers, where \(L>l\) and \({\mathcal {X}}^L=\{\gamma \in {\mathcal {X}}\mid {\mathcal {L}}[\gamma ]=L \}\). Moreover, the set \({\mathcal {X}}_m\) is strongly open, and hence such minimizers are local minimizers on \({\mathcal {X}}\) or \({\mathcal {X}}^L\), respectively.

B Uniqueness of minimizers for well-prepared boundary conditions

In this section we briefly show that the uniqueness of global minimizers is easily proved or disproved for some special parameters of the boundary condition, which possess well-prepared symmetry.

We observe that under the generic boundary angle condition (2.3), if circular arcs are admissible, then global minimizers are unique. For the extensible problem with any fixed \(\varepsilon >0\), the inequality \(X^2+Y^2\ge 2XY\) leads to

$$\begin{aligned} \varepsilon ^2\int _\gamma \kappa ^2 ds + \int _\gamma ds \ge 2\varepsilon \int _\gamma |\kappa | ds, \end{aligned}$$

where the equality is attained if and only if \(|\kappa |=1/\varepsilon \). In addition we easily observe that the right-hand side attains its minimum among admissible curves \(\gamma \in {\mathcal {A}}_{\theta _0,\theta _1,l}\) if and only if a convex curve of rotation angle \(|\theta _0|+|\theta _1|\) is admissible. Therefore, if a circular arc of radius \(1/\varepsilon \) is admissible, i.e., \(\theta _0=-\theta _1\) and \(l=2\cos \theta _0/\varepsilon \), then the circular arc of radius \(1/\varepsilon \) is a unique global minimizer. For the inextensible problem with fixed \(L>0\), the Cauchy–Schwarz inequality leads to

$$\begin{aligned} \int _\gamma \kappa ^2 ds \ge \frac{1}{L}\left( \int _\gamma |\kappa | ds\right) ^2, \end{aligned}$$

where the equality is attained if and only if \(|\kappa |\) is constant. Then a similar consideration implies that if a circular arc is admissible, i.e., \(\theta _0=-\theta _1\) and \(l=L\sin \theta _0/\theta _0\), then the circular arc of radius \(L/2\theta _0\) is a unique global minimizer.

We shall finally think of some particular critical cases. Both for the extensible problem with fixed \(\varepsilon >0\) and the inextensible problem with fixed \(L>0\), the most trivial case is that \((l,\theta _0,\theta _1)=(l,0,0)\) with \(l>0\); in this case the segment is a unique minimizer. If \((l,\theta _0,\theta _1)=(0,0,0)\) or \((l,|\theta _0|,|\theta _1|)=(0,\pi ,\pi )\), a consideration as in the above paragraph implies there are only two minimizers of suitable circle, thus being not unique in the strict sense but unique up to symmetry. In other critical cases, we are often able to ensure some nonuniqueness by a simple argument on symmetry, but up-to-symmetry uniqueness is a delicate issue (cf. [76]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, T. Elastic curves and phase transitions. Math. Ann. 376, 1629–1674 (2020). https://doi.org/10.1007/s00208-019-01821-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01821-8

Mathematics Subject Classification

Navigation