×

Entanglement entropy and superselection sectors. I: Global symmetries. (English) Zbl 1435.81116

Summary: Some quantum field theories show, in a fundamental or an effective manner, an alternative between a loss of duality for algebras of operators corresponding to complementary regions, or a loss of additivity. In this latter case, the algebra contains some operator that is not generated locally, in the former, the entropies of complementary regions do not coincide. Typically, these features are related to the incompleteness of the operator content of the theory, or, in other words, to the existence of superselection sectors. We review some aspects of the mathematical literature on superselection sectors aiming attention to the physical picture and focusing on the consequences for entanglement entropy (EE). For purposes of clarity, the whole discussion is divided into two parts according to the superselection sectors classification: the present part I is devoted to superselection sectors arising from global symmetries, and the forthcoming part II will consider those arising from local symmetries. Under this perspective, here restricted to global symmetries, we study in detail different cases such as models with finite and Lie group symmetry as well as with spontaneous symmetry breaking or excited states. We illustrate the general results with simple examples. As an important application, we argue the features of holographic entanglement entropy correspond to a picture of an sub-theory with a large number of superselection sectors and suggest some ways in which this identification could be made more precise.

MSC:

81T10 Model quantum field theories
81P42 Entanglement measures, concurrencies, separability criteria
81R40 Symmetry breaking in quantum theory

References:

[1] Doplicher, S.; Roberts, JE, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys., 131, 51 (1990) · Zbl 0734.46042
[2] Longo, R.; Rehren, K-H, Nets of subfactors, Rev. Math. Phys., 7, 567 (1995) · Zbl 0836.46055
[3] Doplicher, S.; Haag, R.; Roberts, JE, Fields, observables and gauge transformations I, Commun. Math. Phys., 13, 1 (1969) · Zbl 0175.24704
[4] Doplicher, S.; Haag, R.; Roberts, JE, Fields, observables and gauge transformations II, Commun. Math. Phys., 15, 173 (1969) · Zbl 0186.58205
[5] Doplicher, S.; Haag, R.; Roberts, JE, Local observables and particle statistics II, Commun. Math. Phys., 35, 49 (1974)
[6] Buchholz, D.; Fredenhagen, K., Locality and the structure of particle states, Commun. Math. Phys., 84, 1 (1982) · Zbl 0498.46061
[7] Casini, H.; Huerta, M.; Myers, RC; Yale, A., Mutual information and the F-theorem, JHEP, 10, 003 (2015) · Zbl 1388.81075
[8] Casini, H.; Huerta, M., Remarks on the entanglement entropy for disconnected regions, JHEP, 03, 048 (2009)
[9] Casini, H., Entropy localization and extensivity in the semiclassical black hole evaporation, Phys. Rev., D 79, 024015 (2009)
[10] Casini, H.; Huerta, M.; Rosabal, JA, Remarks on entanglement entropy for gauge fields, Phys. Rev., D 89, 085012 (2014)
[11] Ghosh, S.; Soni, RM; Trivedi, SP, On the entanglement entropy for gauge theories, JHEP, 09, 069 (2015) · Zbl 1388.81438
[12] Soni, RM; Trivedi, SP, Entanglement entropy in (3 + 1) − d free U(1) gauge theory, JHEP, 02, 101 (2017) · Zbl 1377.81133
[13] Soni, RM; Trivedi, SP, Aspects of entanglement entropy for gauge theories, JHEP, 01, 136 (2016) · Zbl 1388.81088
[14] Van Acoleyen, K., The entanglement of distillation for gauge theories, Phys. Rev. Lett., 117, 131602 (2016)
[15] Donnelly, W.; Wall, AC, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett., 114, 111603 (2015)
[16] Donnelly, W., Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev., D 85, 085004 (2012)
[17] Donnelly, W.; Wall, AC, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev., D 94, 104053 (2016)
[18] Donnelly, W., Entanglement entropy and nonabelian gauge symmetry, Class. Quant. Grav., 31, 214003 (2014) · Zbl 1304.81121
[19] Camps, J., Superselection sectors of gravitational subregions, JHEP, 01, 182 (2019) · Zbl 1409.81111
[20] Longo, R.; Xu, F., Relative entropy in CFT, Adv. Math., 337, 139 (2018) · Zbl 1398.81216
[21] F. Xu, Some results on relative entropy in quantum field theory, arXiv:1810.10642 [INSPIRE]. · Zbl 1437.81047
[22] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602 (2006) · Zbl 1228.83110
[23] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, JHEP, 08, 090 (2013) · Zbl 1342.83185
[24] Freedman, M.; Headrick, M., Bit threads and holographic entanglement, Commun. Math. Phys., 352, 407 (2017) · Zbl 1425.81014
[25] S.X. Cui et al., Bit threads and holographic monogamy, arXiv:1808.05234 [INSPIRE]. · Zbl 1476.81012
[26] Almheiri, A.; Dong, X.; Harlow, D., Bulk locality and quantum error correction in AdS/CFT, JHEP, 04, 163 (2015) · Zbl 1388.81095
[27] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP, 06, 149 (2015) · Zbl 1388.81094
[28] Harlow, D., The Ryu-Takayanagi formula from quantum error correction, Commun. Math. Phys., 354, 865 (2017) · Zbl 1377.81040
[29] R. Longo, Index of subfactors and statistics of quantum fields. I, Commun. Math. Phys.126 (1989) 217 [INSPIRE]. · Zbl 0682.46045
[30] Kawahigashi, Yasuyuki; Longo, Roberto; Müger, Michael, Multi-Interval Subfactors and Modularity¶of Representations in Conformal Field Theory, Communications in Mathematical Physics, 219, 3, 631-669 (2001) · Zbl 1016.81031
[31] Carpi, S.; Kawahigashi, Y.; Longo, R., Structure and classification of superconformal nets, Ann. Henri Poincaré, 9, 1069 (2008) · Zbl 1154.81023
[32] F. Xu, On relative entropy and global index, arXiv:1812.01119 [INSPIRE]. · Zbl 1451.46051
[33] Haag, R., Local quantum physics: fields, particles, algebras (1992), Germany: Springer, Germany · Zbl 0777.46037
[34] Witten, E., APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys., 90, 045003 (2018)
[35] Araki, H., Von Neumann algebras of local observables for free scalar field, J. Math. Phys., 5, 1 (1964) · Zbl 0151.44401
[36] S.S. Horuzhy, Introduction to algebraic quantum field theory, Springer, Germany 2(012). · Zbl 0656.46055
[37] Bisognano, JJ; Wichmann, EH, On the duality condition for a Hermitian scalar field, J. Math. Phys., 16, 985 (1975) · Zbl 0316.46062
[38] F. Gabbiani and J. Fröhlich, Operator algebras and conformal field theory, Commun. Math. Phys.155 (1993) 569. · Zbl 0801.46084
[39] H. Casini, The quantum logic of causal sets, Class. Quant. Grav.19 (2002) 6389 [gr-qc/0205013] [INSPIRE]. · Zbl 1039.83002
[40] H. Halvorson and M. Muger, Algebraic quantum field theory, in Philosophy of physics, J. Butterfield and J. Earman eds., North Holland The Netherlands (2007), math-ph/0602036 [INSPIRE].
[41] Bogolubov, NN; Logunov, A.; Todorov, I., Introduction to axiomatic quantum field theory (1975), U.S.A.: W.A. Benjamin, U.S.A. · Zbl 1114.81300
[42] H. Araki et al., Mathematical theory of quantum fields, Oxford University Press on Demand, Oxford U.K. (1999). · Zbl 0998.81501
[43] Doplicher, S.; Longo, R., Standard and split inclusions of von Neumann algebras, Invent. Math., 75, 493 (1984) · Zbl 0539.46043
[44] Petz, D., Quantum information theory and quantum statistics (2007), Germany: Springer, Germany
[45] Ohya, M.; Petz, D., Quantum entropy and its use (2004), Germany: Springer, Germany
[46] Marvian, I.; Spekkens, RW, How to quantify coherence: distinguishing speakable and unspeakable notions, Phys. Rev., A 94, 052324 (2016)
[47] Borchers, HJ, On revolutionizing quantum field theory with Tomita’s modular theory, J. Math. Phys., 41, 3604 (2000) · Zbl 1031.81547
[48] Kitaev, A.; Preskill, J., Topological entanglement entropy, Phys. Rev. Lett., 96, 110404 (2006)
[49] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett.96 (2006) 110405 [cond-mat/0510613] [INSPIRE].
[50] Coles, PJ; Berta, M.; Tomamichel, M.; Wehner, S., Entropic uncertainty relations and their applications, Rev. Mod. Phys., 89, 015002 (2017)
[51] Berta, M.; Wehner, S.; Wilde, MM, Entropic uncertainty and measurement reversibility, New J. Phys., 18, 073004 (2016) · Zbl 1456.81270
[52] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE]. · Zbl 1472.81208
[53] Hamermesh, M., Group theory and its application to physical problems (2012), U.S.A: Courier Corporation, U.S.A · Zbl 0151.34101
[54] Lewkowycz, A.; Maldacena, J., Exact results for the entanglement entropy and the energy radiated by a quark, JHEP, 05, 025 (2014) · Zbl 1390.81606
[55] Dong, S.; Fradkin, E.; Leigh, RG; Nowling, S., Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids, JHEP, 05, 016 (2008)
[56] P. Caputa, J. Simón, A. S^̌tikonas and T. Takayanagi, Quantum entanglement of localized excited states at finite temperature, JHEP01 (2015) 102 [arXiv:1410.2287] [INSPIRE].
[57] Nozaki, M.; Numasawa, T.; Takayanagi, T., Quantum entanglement of local operators in conformal field theories, Phys. Rev. Lett., 112, 111602 (2014)
[58] Alcaraz, FC; Berganza, MI; Sierra, G., Entanglement of low-energy excitations in conformal field theory, Phys. Rev. Lett., 106, 201601 (2011)
[59] R. Longo, Entropy distribution of localised states, arXiv:1809.03358 [INSPIRE]. · Zbl 1432.81009
[60] S. Hollands and K. Sanders, Entanglement measures and their properties in quantum field theory, arXiv:1702.04924 [INSPIRE]. · Zbl 1408.81005
[61] Buchholz, D.; Doplicher, S.; Longo, R.; Roberts, JE, A new look at Goldstone’s theorem, Rev. Math. Phys., 4, 49 (1992) · Zbl 0784.46060
[62] H. Casini, M. Huerta, J.M. Magán and D. Pontello, Entanglement entropy and superselection sectors. Part II. Local symmetries, to appear. · Zbl 1435.81116
[63] Casini, H.; Huerta, M., Entanglement entropy for a Maxwell field: numerical calculation on a two dimensional lattice, Phys. Rev., D 90, 105013 (2014)
[64] Agon, CA; Headrick, M.; Jafferis, DL; Kasko, S., Disk entanglement entropy for a Maxwell field, Phys. Rev., D 89, 025018 (2014)
[65] Klebanov, IR; Pufu, SS; Sachdev, S.; Safdi, BR, Entanglement entropy of 3 − d conformal gauge theories with many flavors, JHEP, 05, 036 (2012) · Zbl 1348.81321
[66] Klebanov, IR; Pufu, SS; Safdi, BR, F-theorem without supersymmetry, JHEP, 10, 038 (2011) · Zbl 1303.81127
[67] M.A. Metlitski and T. Grover, Entanglement entropy of systems with spontaneously broken continuous symmetry, arXiv:1112.5166 [INSPIRE].
[68] Kallin, AB; Hastings, MB; Melko, RG; Singh, RR, Anomalies in the entanglement properties of the square-lattice Heisenberg model, Phys. Rev., B 84, 165134 (2011)
[69] Harlow, D., Wormholes, emergent gauge fields and the weak gravity conjecture, JHEP, 01, 122 (2016) · Zbl 1388.83255
[70] Calabrese, P.; Cardy, J.; Tonni, E., Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech., 11, P11001 (2009) · Zbl 1456.81360
[71] Calabrese, P.; Cardy, J.; Tonni, E., Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech., 1, P01021 (2011) · Zbl 1456.81361
[72] Balasubramanian, V., Entwinement in discretely gauged theories, JHEP, 12, 094 (2016) · Zbl 1390.83084
[73] Casini, H.; Fosco, C. D.; Huerta, M., Entanglement and alpha entropies for a massive Dirac field in two dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2005, 7, P07007-P07007 (2005)
[74] Casini, H.; Huerta, M., Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav., 26, 185005 (2009) · Zbl 1176.83071
[75] Arias, RE; Casini, H.; Huerta, M.; Pontello, D., Entropy and modular Hamiltonian for a free chiral scalar in two intervals, Phys. Rev., D 98, 125008 (2018)
[76] Casini, H.; Huerta, M., A finite entanglement entropy and the c-theorem, Phys. Lett., B 600, 142 (2004) · Zbl 1247.81021
[77] Cardy, J.; Maloney, A.; Maxfield, H., A new handle on three-point coefficients: OPE asymptotics from genus two modular invariance, JHEP, 10, 136 (2017) · Zbl 1383.81190
[78] Casini, H.; Huerta, M., Entanglement entropy in free quantum field theory, J. Phys., A 42, 504007 (2009) · Zbl 1186.81017
[79] Arias, R.; Casini, H.; Huerta, M.; Pontello, D., Anisotropic Unruh temperatures, Phys. Rev., D 96, 105019 (2017)
[80] Casini, H.; Huerta, M.; Myers, RC, Towards a derivation of holographic entanglement entropy, JHEP, 05, 036 (2011) · Zbl 1296.81073
[81] Calabrese, P.; Cardy, J., Entanglement entropy and conformal field theory, J. Phys., A 42, 504005 (2009) · Zbl 1179.81026
[82] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007)
[83] Maldacena, JM, Eternal black holes in Anti-de Sitter, JHEP, 04, 021 (2003)
[84] Emparan, R., AdS/CFT duals of topological black holes and the entropy of zero energy states, JHEP, 06, 036 (1999) · Zbl 0951.83021
[85] Blanco, DD; Casini, H.; Hung, L-Y; Myers, RC, Relative entropy and holography, JHEP, 08, 060 (2013) · Zbl 1342.83128
[86] Lashkari, N.; McDermott, MB; Van Raamsdonk, M., Gravitational dynamics from entanglement ‘thermodynamics’, JHEP, 04, 195 (2014)
[87] Faulkner, T., Gravitation from entanglement in holographic CFTs, JHEP, 03, 051 (2014) · Zbl 1333.83141
[88] Bombelli, L.; Koul, RK; Lee, J.; Sorkin, RD, A quantum source of entropy for black holes, Phys. Rev., D 34, 373 (1986) · Zbl 1222.83077
[89] Harper, J.; Headrick, M.; Rolph, A., Bit threads in higher curvature gravity, JHEP, 11, 168 (2018) · Zbl 1404.83085
[90] Faulkner, T.; Lewkowycz, A.; Maldacena, J., Quantum corrections to holographic entanglement entropy, JHEP, 11, 074 (2013) · Zbl 1392.81021
[91] Czech, B.; Karczmarek, JL; Nogueira, F.; Van Raamsdonk, M., The gravity dual of a density matrix, Class. Quant. Grav., 29, 155009 (2012) · Zbl 1248.83029
[92] Dong, X.; Harlow, D.; Wall, AC, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett., 117, 021601 (2016)
[93] Jafferis, DL; Lewkowycz, A.; Maldacena, J.; Suh, SJ, Relative entropy equals bulk relative entropy, JHEP, 06, 004 (2016) · Zbl 1388.83268
[94] McGough, L.; Verlinde, H., Bekenstein-Hawking entropy as topological entanglement entropy, JHEP, 11, 208 (2013) · Zbl 1342.83256
[95] M. Duetsch and K.-H. Rehren, Generalized free fields and the AdS-CFT correspondence, Ann. Henri Poincaré4 (2003) 613 [math-ph/0209035] [INSPIRE]. · Zbl 1038.81051
[96] J. Lin, Ryu-Takayanagi area as an entanglement edge term, arXiv:1704.07763 [INSPIRE].
[97] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, JHEP, 09, 102 (2016) · Zbl 1390.83016
[98] Faulkner, T.; Lewkowycz, A., Bulk locality from modular flow, JHEP, 07, 151 (2017) · Zbl 1380.81313
[99] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc.C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
[100] Bousso, R., The holographic principle, Rev. Mod. Phys., 74, 825 (2002) · Zbl 1205.83025
[101] Susskind, L., The World as a hologram, J. Math. Phys., 36, 6377 (1995) · Zbl 0850.00013
[102] Caputa, P.; Magan, JM, Quantum computation as gravity, Phys. Rev. Lett., 122, 231302 (2019)
[103] El-Showk, S.; Papadodimas, K., Emergent spacetime and holographic CFTs, JHEP, 10, 106 (2012)
[104] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE]. · Zbl 1359.81171
[105] Maldacena, J.; Susskind, L., Cool horizons for entangled black holes, Fortsch. Phys., 61, 781 (2013) · Zbl 1338.83057
[106] Hayden, P.; Headrick, M.; Maloney, A., Holographic mutual information is monogamous, Phys. Rev., D 87, 046003 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.