×

Propagation of chaos, Wasserstein gradient flows and toric Kähler-Einstein metrics. (English) Zbl 1434.82063

Summary: Motivated by a probabilistic approach to Kähler-Einstein metrics we consider a general nonequilibrium statistical mechanics model in Euclidean space consisting of the stochastic gradient flow of a given (possibly singular) quasiconvex N-particle interaction energy. We show that a deterministic “macroscopic” evolution equation emerges in the large N-limit of many particles. This is a strengthening of previous results which required a uniform two-sided bound on the Hessian of the interaction energy. The proof uses the theory of weak gradient flows on the Wasserstein space. Applied to the setting of permanental point processes at “negative temperature”, the corresponding limiting evolution equation yields a drift-diffusion equation, coupled to the Monge-Ampère operator, whose static solutions correspond to toric Kähler-Einstein metrics. This drift-diffusion equation is the gradient flow on the Wasserstein space of probability measures of the K-energy functional in Kähler geometry and it can be seen as a fully nonlinear version of various extensively studied dissipative evolution equations and conservation laws, including the Keller-Segel equation and Burger’s equation. In a companion paper, applications to singular pair interactions in one dimension are given.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82C22 Interacting particle systems in time-dependent statistical mechanics
32Q20 Kähler-Einstein manifolds
32W20 Complex Monge-Ampère operators

References:

[1] 10.1007/s00440-008-0177-3 · Zbl 1235.60105 · doi:10.1007/s00440-008-0177-3
[2] 10.3934/dcds.2014.34.1251 · Zbl 1287.35064 · doi:10.3934/dcds.2014.34.1251
[3] 10.1016/j.aim.2013.08.024 · Zbl 1286.58010 · doi:10.1016/j.aim.2013.08.024
[4] 10.1007/s00220-017-2926-6 · Zbl 1394.32019 · doi:10.1007/s00220-017-2926-6
[5] 10.5802/afst.1386 · Zbl 1283.58013 · doi:10.5802/afst.1386
[6] 10.1007/s11511-011-0067-x · Zbl 1241.32030 · doi:10.1007/s11511-011-0067-x
[7] 10.1016/j.jfa.2011.12.012 · Zbl 1237.35155 · doi:10.1016/j.jfa.2011.12.012
[8] 10.1007/BF01611497 · Zbl 1155.81383 · doi:10.1007/BF01611497
[9] 10.1002/cpa.3160440402 · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[10] 10.1090/conm/526/10375 · doi:10.1090/conm/526/10375
[11] 10.1142/S1793744211000400 · Zbl 1229.83073 · doi:10.1142/S1793744211000400
[12] ; Brenier, Bull. Inst. Math. Acad. Sin. (N.S.), 11, 23 (2016) · Zbl 1336.35330
[13] 10.1137/S0036142997317353 · Zbl 0924.35080 · doi:10.1137/S0036142997317353
[14] 10.1046/j.1365-2966.2003.07106.x · doi:10.1046/j.1365-2966.2003.07106.x
[15] 10.1515/crelle.2012.033 · Zbl 1372.53075 · doi:10.1515/crelle.2012.033
[16] 10.1007/s00205-006-0040-6 · Zbl 1139.86003 · doi:10.1007/s00205-006-0040-6
[17] 10.1080/17442508708833446 · Zbl 0613.60021 · doi:10.1080/17442508708833446
[18] ; Donaldson, Handbook of geometric analysis, I. Adv. Lect. Math., 7, 29 (2008)
[19] 10.1214/16-AAP1267 · Zbl 1447.65106 · doi:10.1214/16-AAP1267
[20] 10.1007/3-540-45674-0_7 · Zbl 1309.76114 · doi:10.1007/3-540-45674-0_7
[21] 10.1038/417260a · doi:10.1038/417260a
[22] 10.1112/S0010437X1500768X · Zbl 1372.14039 · doi:10.1112/S0010437X1500768X
[23] 10.4007/annals.2013.178.2.4 · Zbl 1281.60060 · doi:10.4007/annals.2013.178.2.4
[24] 10.1016/j.jfa.2014.02.030 · Zbl 1396.60102 · doi:10.1016/j.jfa.2014.02.030
[25] 10.1016/0022-247X(80)90246-2 · Zbl 0455.26006 · doi:10.1016/0022-247X(80)90246-2
[26] 10.1002/cpa.3160030302 · Zbl 0039.10403 · doi:10.1002/cpa.3160030302
[27] 10.1007/s00591-011-0097-7 · Zbl 1253.14058 · doi:10.1007/s00591-011-0097-7
[28] 10.1137/S0036141096303359 · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[29] ; Kac, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, III, 171 (1956) · Zbl 0070.15203
[30] 10.1103/PhysRevLett.56.889 · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[31] 10.1016/0022-5193(70)90092-5 · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[32] ; Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS-NSF Regional Conference Series in Applied Mathematics, 11 (1973) · Zbl 0268.35062
[33] 10.1137/050629070 · Zbl 1134.35046 · doi:10.1137/050629070
[34] 10.4007/annals.2009.169.903 · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[35] 10.4310/CAG.1998.v6.n2.a1 · Zbl 0914.58008 · doi:10.4310/CAG.1998.v6.n2.a1
[36] 10.1006/aima.1997.1634 · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[37] 10.1073/pnas.56.6.1907 · Zbl 0149.13501 · doi:10.1073/pnas.56.6.1907
[38] ; McKean, Stochastic differential equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), 41 (1967) · Zbl 0153.13602
[39] 10.1007/BF01342187 · doi:10.1007/BF01342187
[40] 10.1007/s00440-013-0542-8 · Zbl 1333.60174 · doi:10.1007/s00440-013-0542-8
[41] 10.1137/090750809 · Zbl 1203.35170 · doi:10.1137/090750809
[42] 10.1081/PDE-100002243 · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[43] 10.1007/BF01646480 · Zbl 0144.48205 · doi:10.1007/BF01646480
[44] 10.1007/978-3-662-04702-6 · doi:10.1007/978-3-662-04702-6
[45] 10.1103/RevModPhys.61.185 · doi:10.1103/RevModPhys.61.185
[46] ; Stroock, Multidimensional diffusion processes. Grundlehren der mathematischen Wissenschaften, 233 (1997)
[47] 10.1007/BFb0085169 · doi:10.1007/BFb0085169
[48] 10.1007/b12016 · Zbl 1013.00028 · doi:10.1007/b12016
[49] 10.1016/j.aim.2003.09.009 · Zbl 1086.53067 · doi:10.1016/j.aim.2003.09.009
[50] 10.1007/BF02101897 · Zbl 0852.35097 · doi:10.1007/BF02101897
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.