×

Kähler–Ricci solitons on toric manifolds with positive first Chern class. (English) Zbl 1086.53067

The authors give a complete solution to the problem of existence of Kähler-Einstein matrices or Kähler-Ricci solitons, unique up to holomorphic automorphisms, on any toric Kähler manifold with positive first Chern class. Moreover, there exists a Kähler-Ricci soliton on a compact complex surface with positive first Chern class, and a soliton is a Kähler metric if and only if the Futaki invariant vanishes. For a toric Fano manifold there exists a Kähler-Einstein metric if and only if the Futaki invariant vanishes and this implies that the holomorphic automorphism group of the manifold is reductive.
Reviewer: Jan Kurek (Lublin)

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
58E11 Critical metrics
Full Text: DOI

References:

[1] Aubin, T., Equations du type Monge-Ampère sur les variétés kählériennes compactes (French), Bull. Sci. Math., 102, 2, 63-95 (1978) · Zbl 0374.53022
[2] Bando, S.; Mabuchi, T., Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, 11-40 (1987) · Zbl 0641.53065
[3] Batyrev, V. V., Toric Fano threefolds (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 45, 704-717 (1981) · Zbl 0478.14032
[4] Batyrev, V. V., On the classification of toric Fano 4-folds, J. Math. Sci., 94, 1021-1050 (1999) · Zbl 0929.14024
[5] Batyrev, V. V.; Selivanova, E. N., Einstein-Kähler metrics on symmetric toric Fano manifolds, J. Reine Angew. Math., 512, 225-236 (1999) · Zbl 0939.32016
[6] Cao, H. D., Limits of solutions of the Kähler-Ricci flow, J. Differential Geom., 45, 257-272 (1997) · Zbl 0889.58067
[7] H.D. Cao, G. Tian, X.H. Zhu, Kähler-Ricci solitons on compact Kähler manifolds with \(c_1M\); H.D. Cao, G. Tian, X.H. Zhu, Kähler-Ricci solitons on compact Kähler manifolds with \(c_1M\)
[8] Friedan, D., Nonlinear models in \(2+ε\) dimensions, Phys. Rev. Lett., 45, 1057-1060 (1980)
[9] Futaki, A., An obstruction to the existence of Kähler-Einstein metrics, Invent. Math., 73, 437-443 (1983) · Zbl 0506.53030
[10] Hamilton, R. S., Formation of singularities in the Ricci-flow, Surveys Differential Geom., 2, 7-136 (1995) · Zbl 0867.53030
[11] Koiso, N., On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., 18, 327-337 (1990) · Zbl 0739.53052
[12] X.N. Ma, N.S. Trudinger, X.-J. Wang, The intermediate Christoffel-Minkowski problem, preprint.; X.N. Ma, N.S. Trudinger, X.-J. Wang, The intermediate Christoffel-Minkowski problem, preprint.
[13] Mabuchi, T., Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties, Osaka J. Math., 24, 705-737 (1987) · Zbl 0661.53032
[14] Matsushima, Y., Sur la structure du group d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J., 11, 145-150 (1957) · Zbl 0091.34803
[15] De G. Miguel, Differentiation of integrals in \(R^n\); De G. Miguel, Differentiation of integrals in \(R^n\)
[16] Nakagawa, Y., Einstein-Kähler toric Fano manifolds, Töhoku Math. J., 45, 297-310 (1993) · Zbl 0778.53040
[17] Nakagawa, Y., Classification of Einstein-Kähler toric Fano manifolds, Töhoku Math. J., 46, 125-133 (1994) · Zbl 0838.32008
[18] Oda, T., Convex Bodies and Algebraic Geometry—An Introduction To The Theory of Toric Varieties (1988), Springer: Springer Berlin · Zbl 0628.52002
[19] Pedersen, H.; Tonnesen-Friedman, C.; Valent, G., Quasi-Einstein Kähler metrics, Lett. Math. Phys., 50, 229-241 (2000) · Zbl 0997.53035
[20] Pogorelov, A. V., The Minkowski Multidimensional Problem (1978), Wiley: Wiley New York · Zbl 0387.53023
[21] Real, C., Métriques d’Einstein-Kähler sur des variétés aṕremiére classe de Chern positive, J. Funct. Anal., 106, 145-188 (1992) · Zbl 0766.53039
[22] Siu, Y. T., The existence of Kähler-Einstein metrics on manifolds with positive anti-canonical line bundle and a suitable finite symmetry group, Ann. of Math., 127, 2, 585-627 (1988) · Zbl 0651.53035
[23] Tian, G., On Calabi’s conjecture for complex surfaces, Invent. Math., 101, 101-172 (1990) · Zbl 0716.32019
[24] Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130, 1-37 (1997) · Zbl 0892.53027
[25] Tian, G.; Yau, S. T., Kähler-Einstein metrics on complex surfaces with \(C_1 >0\), Comm. Math. Phys., 112, 175-203 (1987) · Zbl 0631.53052
[26] Tian, G.; Zhu, X. H., Uniqueness of Kähler-Ricci solitons, Acta Math., 184, 271-305 (2000) · Zbl 1036.53052
[27] Tian, G.; Zhu, X. H., A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comm. Math. Helv., 77, 297-325 (2002) · Zbl 1036.53053
[28] Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., 31, 339-411 (1978) · Zbl 0369.53059
[29] Zhu, X. H., Kähler-Ricci soliton type equations on compact complex manifolds with \(C_1(M)>0\), J. Geom. Anal., 10, 759-774 (2000) · Zbl 1036.53054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.