×

A new approach to quantitative propagation of chaos for drift, diffusion and jump processes. (English) Zbl 1333.60174

Summary: This paper is devoted to the study of the mean field limit for many-particle systems undergoing jump, drift or diffusion processes, as well as combinations of them. The main results are quantitative estimates on the decay of fluctuations around the deterministic limit and of correlations between particles, as the number of particles goes to infinity. To this end we introduce a general functional framework which reduces this question to the one of proving a purely functional estimate on some abstract generator operators (consistency estimate) together with fine stability estimates on the flow of the limiting nonlinear equation (stability estimates). Then we apply this method to a Boltzmann collision jump process (for Maxwell molecules), to a McKean-Vlasov drift-diffusion process and to an inelastic Boltzmann collision jump process with (stochastic) thermal bath. To our knowledge, our approach yields the first such quantitative results for a combination of jump and diffusion processes.

MSC:

60J60 Diffusion processes
60J75 Jump processes (MSC2010)
35Q20 Boltzmann equations
35Q83 Vlasov equations
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76T25 Granular flows

References:

[1] Arkeryd, L., Caprino, S., Ianiro, N.: The homogeneous Boltzmann hierarchy and statistical solutions to the homogeneous Boltzmann equation. J. Stat. Phys. 63(1-2), 345-361 (1991) · doi:10.1007/BF01026609
[2] Bisi, M., Carrillo, J.A., Toscani, G.: Contractive metrics for a Boltzmann equation for granular gases: diffusive equilibria. J. Stat. Phys. 118(1-2), 301-331 (2005) · Zbl 1085.82008 · doi:10.1007/s10955-004-8785-5
[3] Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98(3-4), 743-773 (2000) · Zbl 1056.76071 · doi:10.1023/A:1018627625800
[4] Bolley, F., Carrillo, J.A.: Tanaka theorem for inelastic Maxwell models. Commun. Math. Phys. 276(2), 287-314 (2007) · Zbl 1136.82033 · doi:10.1007/s00220-007-0336-x
[5] Bolley, F., Guillin, A., Malrieu, F.: Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. M2AN Math. Model. Numer. Anal. 44(5), 867-884 (2010) · Zbl 1201.82029 · doi:10.1051/m2an/2010045
[6] Carrillo, J., Toscani, G.: Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Rivista Matemàtica di Parma 6, 75-198 (2007) · Zbl 1142.82018
[7] Carrillo, J.A., Cercignani, C., Gamba, I.M.: Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E (3) 62(6, part A), 7700-7707 (2000)
[8] Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19(3), 971-1018 (2003) · Zbl 1073.35127 · doi:10.4171/RMI/376
[9] Cercignani, C.: On the Boltzmann equation for rigid spheres. Transport Theory Stat. Phys. 2(3), 211-225 (1972) · Zbl 0295.76048 · doi:10.1080/00411457208232538
[10] Cercignani, C.: The Boltzmann Equation and Its Applications, volume 67 of Applied Mathematical Sciences. Springer, New York (1988) · Zbl 0646.76001 · doi:10.1007/978-1-4612-1039-9
[11] Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases, volume 106 of Applied Mathematical Sciences. Springer, New York (1994) · Zbl 0813.76001 · doi:10.1007/978-1-4419-8524-8
[12] Dudley, R.M.: Real analysis and probability, volume 74 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2002) (revised reprint of the 1989 original) · Zbl 1023.60001
[13] Ethier, S.N., Kurtz, T.G.: Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986). Characterization and convergence · Zbl 0592.60049
[14] Fournier, N.: Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff. J. Stat. Phys. 125(4), 927-946 (2006) · Zbl 1107.82045 · doi:10.1007/s10955-006-9208-6
[15] Fournier, N., Godinho, D.: Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff. Commun. Math. Phys. 316, 307-344 (2012) · Zbl 1273.82058
[16] Gabetta, G., Toscani, G., Wennberg, B.: Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Phys. 81(5-6), 901-934 (1995) · Zbl 1081.82616 · doi:10.1007/BF02179298
[17] Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase. Springer, Berlin (1958) · Zbl 1142.82018
[18] Graham, C., Méléard, S.: Convergence rate on path space for stochastic particle approximations to the Boltzmann equation. Z. Angew. Math. Mech. 76(suppl. 1), 291-294 (1996) [ICIAM/GAMM 95 (Hamburg, 1995)] · Zbl 0900.65392
[19] Graham, C., Méléard, S.: Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Probab. 25(1), 115-132 (1997) · Zbl 0873.60076 · doi:10.1214/aop/1024404281
[20] Graham, C., Méléard, S.: Probabilistic tools and Monte-Carlo approximations for some Boltzmann equations. In: CEMRACS 1999 (Orsay), volume 10 of ESAIM Proc. Soc. Math. Appl. Indust., Paris, pp. 77-126 (1999, electronic) · Zbl 0985.60089
[21] Grünbaum, F.A.: Propagation of chaos for the Boltzmann equation. Arch. Ration. Mech. Anal. 42, 323-345 (1971) · Zbl 0236.45011 · doi:10.1007/BF00250440
[22] Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum. Commun. Math. Phys. 105(2), 189-203 (1986) · Zbl 0609.76083 · doi:10.1007/BF01211098
[23] Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. III (Berkeley and Los Angeles, 1956), University of California Press, pp. 171-197 (1954-1955) · Zbl 0072.42802
[24] Kac, M.: Probability and related topics in physical sciences. In: Uhlenbeck, G.E., Hibbs, A.R., van der Pol, B. (eds.) Lectures in Applied Mathematics. Proceedings of the Summer Seminar, Boulder, Colo. Interscience Publishers, London (1959) · Zbl 0087.33003
[25] Kac, M.: Some probabilistic aspects of the Boltzmann equation. In: Acta Physica Austraiaca, suppl. X. Springer, Berlin, pp. 379-400 (1979)
[26] Kolokoltsov, V.N.: Nonlinear Markov Processes and Kinetic Equations, volume 182 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2010) · Zbl 1222.60003 · doi:10.1017/CBO9780511760303
[27] Lanford, III, O.E.: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., vol. 38. Springer, Berlin, pp. 1-111 (1975) · Zbl 0329.70011
[28] Malrieu, F.: Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13(2), 540-560 (2003) · Zbl 1031.60085 · doi:10.1214/aoap/1050689593
[29] McKean Jr, H.P.: An exponential formula for solving Boltmann’s equation for a Maxwellian gas. J. Combin. Theory 2, 358-382 (1967) · Zbl 0152.46501 · doi:10.1016/S0021-9800(67)80035-8
[30] Méléard, S.: Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In: Probabilistic Models for Nonlinear Partial Differential Equations, Montecatini Terme, volume 1627 of Lecture Notes in Mathematics. Springer, Berlin, pp. 42-95 (1995) · Zbl 0864.60077
[31] Mischler, S.: Master research course “introduction aux limites de champ moyen pour des systèmes de particules”. cel-00576329 (2010) · Zbl 1031.60085
[32] Mischler, S., Mouhot, C.: Kac’s program in kinetic theory. Preprint arXiv: 1001.2994. Inventiones Matematicae 193(1), 1-147 (2013) · Zbl 1274.82048
[33] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences. Springer, New York (1983) · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[34] Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems, vol. II. Probability and its Applications (New York). Springer, New York (1998) · Zbl 0990.60500
[35] Sznitman, A.-S.: Équations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete 66(4), 559-592 (1984) · Zbl 0553.60069 · doi:10.1007/BF00531891
[36] Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX-1989, volume 1464 of Lecture Notes in Mathematics. Springer, Berlin, pp. 165-251 (1991) · Zbl 0722.00029
[37] Tanaka, H.: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46(1), 67-105 (1978/1979) · Zbl 0389.60079
[38] Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94(3-4), 619-637 (1999) · Zbl 0958.82044 · doi:10.1023/A:1004589506756
[39] Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. I. North-Holland, Amsterdam, pp. 71-305 (2002) · Zbl 1170.82369
[40] Villani, C.: Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003) · Zbl 1106.90001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.