×

Nonconforming Maxwell eigensolvers. (English) Zbl 1203.65236

Summary: Three Maxwell eigensolvers are discussed in this paper. Two of them use classical nonconforming finite element approximations, and the other is an interior penalty type discontinuous Galerkin method. A main feature of these solvers is that they are based on the formulation of the Maxwell eigenproblem on the space \(H _{0}(\mathrm{curl};\Omega )\cap H(\mathrm{div}^{0};\Omega )\). These solvers are free of spurious eigenmodes and they do not require choosing penalty parameters. Furthermore, they satisfy optimal order error estimates on properly graded meshes, and their analysis is greatly simplified by the underlying compact embedding of \(H _{0}(\mathrm{curl};\Omega )\cap H(\mathrm{div}^{0};\Omega)\) in \(L _{2}(\Omega )\). The performance and the relative merits of these eigensolvers are demonstrated through numerical experiments.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
Full Text: DOI

References:

[1] Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982) · Zbl 0482.65060 · doi:10.1137/0719052
[2] Assous, F., Ciarlet, P. Jr., Sonnendrücker, E.: Resolution of the Maxwell equation in a domain with reentrant corners. Math. Model. Numer. Anal. 32, 359–389 (1998) · Zbl 0924.65111
[3] Babuška, I., Osborn, J.: Eigenvalue Problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis II, pp. 641–787. North-Holland, Amsterdam (1991) · Zbl 0875.65087
[4] Boffi, D.: Fortin operators and discrete compactness for edge elements. Numer. Math. 87, 229–246 (2000) · Zbl 0967.65106 · doi:10.1007/s002110000182
[5] Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36, 1264–1290 (1999) · Zbl 1025.78014 · doi:10.1137/S003614299731853X
[6] Boffi, D., Kikuchi, F., Schöberl, J.: Edge element computation of Maxwell’s eigenvalues on general quadrilateral meshes. Math. Models Methods Appl. Sci. 16, 265–273 (2006) · Zbl 1097.65113 · doi:10.1142/S0218202506001145
[7] Brenner, S.C., Cui, J., Li, F., Sung, L.-Y.: A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem. Numer. Math. 109, 509–533 (2008) · Zbl 1166.78006 · doi:10.1007/s00211-008-0149-7
[8] Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free nonconforming finite element method for the reduced time-harmonic Maxwell equations. Math. Comput. 76, 573–595 (2007) · Zbl 1126.78017 · doi:10.1090/S0025-5718-06-01950-8
[9] Brenner, S.C., Li, F., Sung, L.-Y.: A locally divergence-free interior penalty method for two-dimensional curl-curl problems. SIAM J. Numer. Anal. 46, 1190–1211 (2008) · Zbl 1168.65068 · doi:10.1137/060671760
[10] Brenner, S.C., Li, F., Sung, L.-Y.: A nonconforming penalty method for two dimensional curl-curl problems. Math. Models Methods Appl. Sci. (to appear) · Zbl 1168.78315
[11] Brenner, S.C., Sung, L.-Y.: A quadratic nonconforming vector finite element for H(curl;{\(\Omega\)})(div;{\(\Omega\)}). Appl. Math. Lett. doi: 10.1016/j.aml.2008.07.017 · Zbl 1170.65091
[12] Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the Maxwell eigenvalues on simplical meshes. J. Comput. Appl. Math. 204, 317–333 (2007) · Zbl 1131.78007 · doi:10.1016/j.cam.2006.01.042
[13] Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44, 2198–2226 (2006) · Zbl 1344.65110 · doi:10.1137/050636887
[14] Caorsi, S., Fernandes, P., Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38, 580–607 (2000) · Zbl 1005.78012 · doi:10.1137/S0036142999357506
[15] Caorsi, S., Fernandes, P., Raffetto, M.: Spurious-free approximations of electromagnetic eigenproblems by means of Nédélec-type elements. Math. Model. Numer. Anal. 35, 331–358 (2001) · Zbl 0993.78016 · doi:10.1051/m2an:2001118
[16] Chatelin, F.: Spectral Approximations of Linear Operators. Academic Press, San Diego (1983) · Zbl 0517.65036
[17] Costabel, M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12, 365–368 (1990) · Zbl 0699.35028 · doi:10.1002/mma.1670120406
[18] Costabel, M., Dauge, M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Sci. 22, 243–258 (1999) · Zbl 0918.35096 · doi:10.1002/(SICI)1099-1476(199902)22:3<243::AID-MMA37>3.0.CO;2-0
[19] Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151, 221–276 (2000) · Zbl 0968.35113 · doi:10.1007/s002050050197
[20] Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002) · Zbl 1019.78009 · doi:10.1007/s002110100388
[21] Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 7, 33–75 (1973)
[22] Dunford, N., Schwartz, J.T.: Linear Operators II. Wiley-Interscience, New York (1963) · Zbl 0128.34803
[23] Hesthaven, J.S., Warburton, T.: High order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. R. Soc. Lond. Ser. A 362, 493–524 (2004) · Zbl 1078.78014 · doi:10.1098/rsta.2003.1332
[24] Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1966) · Zbl 0148.12601
[25] Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, London (2003) · Zbl 1024.78009
[26] Levillain, V.: Eigenvalue approximation by a mixed method for resonant inhomogeneous cavities with metallic boundaries. Math. Comput. 58, 11–20 (1992) · Zbl 0767.65091 · doi:10.1090/S0025-5718-1992-1106975-3
[27] Warburton, T., Embree, M.: On the role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Mech. Appl. Eng. 195, 3205–3223 (2006) · Zbl 1131.78011 · doi:10.1016/j.cma.2005.06.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.