×

Global dynamics for an attraction-repulsion chemotaxis model with logistic source. (English) Zbl 1430.35115

Summary: In this paper, we investigate attraction-repulsion chemotaxis system with logistic source under homogeneous Neumann boundary conditions in a bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, by some \(L^p\)-estimate techniques, using different methods, we show that the system possesses global classical solution or at least one global weak solution. In addition to, we also consider large time behavior of solutions and steady solutions to an attraction-repulsion chemotaxis system. These results generalize and improve previously known ones, and partially results are new.

MSC:

35K45 Initial value problems for second-order parabolic systems
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B45 A priori estimates in context of PDEs
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583 (2016) · Zbl 1345.35117
[2] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397
[3] Chaplain, M.; Stuart, A., A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10, 149-168 (1993) · Zbl 0783.92019
[4] Friedman, A., Partial Differential Equations (1969), Holt, Rinehart Winston: Holt, Rinehart Winston New York · Zbl 0224.35002
[5] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840 (1981), Springer-Verlag: Springer-Verlag Berlin, New York · Zbl 0456.35001
[6] Höfer, H.; Sherratt, J.; Maini, P., Cellular pattern formation during Dictyostelium aggregation, Phys. D, 85, 425-444 (1995) · Zbl 0888.92005
[7] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065
[8] Jin, H., Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422, 2, 1463-1478 (2015) · Zbl 1307.35139
[9] Jin, H.; Liu, Z., Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space, Appl. Math. Lett., 47, 13-20 (2015) · Zbl 1326.35042
[10] Jin, H.; Wang, Z., Boundedness, blow up and critical mass phenomenon in competing chemotaxis, J. Differ. Equ., 260, 162-196 (2016) · Zbl 1323.35001
[11] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[12] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and Quasi-Linear Equation of Parabolic Type, Amer. Math. Soc. Transl., vol. 23 (1968), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0174.15403
[13] Li, D.; Mu, C.; Lin, K.; Wang, L., Global weak solutions for an attraction-repulsion system with nonlinear diffusion, Math. Methods Appl. Sci., 40, 18, 7368-7395 (2017) · Zbl 1499.35072
[14] Li, D.; Mu, C.; Lin, K.; Wang, L., Large time behavior of solutions to an attraction-repulsion chemotaxis system with logistic source in three dimensions, J. Math. Anal. Appl., 448, 914-936 (2017) · Zbl 1366.35071
[15] Li, J.; Ke, Y.; Wang, Y., Large time behavior of solutions to a fully parabolic attraction-repulsion chemotaxis system with logistic source, Nonlinear Anal., Real World Appl., 39, 261-277 (2018) · Zbl 1377.35026
[16] Li, X., Boundedness in a two-dimensional attraction-repulsion system with nonlinear diffusion, Math. Methods Appl. Sci., 39, 289-301 (2016) · Zbl 1333.35101
[17] Li, X.; Zhao, Y., On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Math. Appl. Math., 81, 165-198 (2016) · Zbl 1336.35338
[18] Lin, K.; Mu, C.; Gao, Y., Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Differ. Equ., 260, 4524-4572 (2016) · Zbl 1347.35047
[19] Lin, K.; Mu, C., Global existence and convergence to steady states for an attraction-repulsion chemotaxis system, Nonlinear Anal., Real World Appl., 31, 630-642 (2016) · Zbl 1358.92031
[20] Lin, K.; Mu, C.; Wang, L., Large-time behavior of an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426, 105-124 (2015) · Zbl 1310.35039
[21] Lin, K.; Mu, C.; Zhou, D., Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction, Math. Models Methods Appl. Sci., 28, 1105-1134 (2018) · Zbl 1391.35200
[22] Liu, D.; Tao, Y., Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38, 12, 2537-2546 (2015) · Zbl 1331.35174
[23] Luca, M.; Chavez-Ross, A.; Edelstein-Keshet, L.; Mogilner, A., Chemotactic signaling, microglia, and Alzheimer’s disease senile plagues: is there a connection?, Bull. Math. Biol., 65, 693-730 (2003) · Zbl 1334.92077
[24] Murray, J., Mathematical Biology I: An Introduction (2002), Springer: Springer Berlin · Zbl 1006.92001
[25] Painter, K.; Maini, P.; Othmer, H., A chemotactic model for the advance and retreat of the primitive streak in avian development, Bull. Math. Biol., 62, 501-525 (2000) · Zbl 1323.92036
[26] Petter, G.; Byrne, H.; Mcelwain, D.; Norbury, J., A model of wound healing and angiogenesis in soft tissue, Math. Biosci., 136, 35-63 (2003) · Zbl 0860.92020
[27] Porzio, M.; Vespri, V., Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 146-178 (1993) · Zbl 0796.35089
[28] Ren, G.; Liu, B., Global boundedness and asymptotic behavior in a two-species chemotaxis-competition system with two signals, Nonlinear Anal., Real World Appl., 48, 288-325 (2019) · Zbl 1425.92034
[29] Ren, G.; Liu, B., Global existence of bounded solutions for a quasilinear chemotaxis system with logistic source, Nonlinear Anal., Real World Appl., 46, 545-582 (2019) · Zbl 1414.35243
[30] Shi, S.; Liu, Z.; Jin, H., Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source, Kinet. Relat. Models, 10, 855-878 (2017) · Zbl 1357.35050
[31] Tao, Y.; Wang, Z., Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23, 1, 1-36 (2013) · Zbl 1403.35136
[32] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715 (2012) · Zbl 1382.35127
[33] Tao, Y.; Winkler, M., Large time behavior in a multi-dimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47, 4229-4250 (2015) · Zbl 1328.35103
[34] Tello, J.; Winkler, M., A chemotaxis system with logistic source, Commun. Partial Differ. Equ., 32, 849-877 (2007) · Zbl 1121.37068
[35] Tian, M.; He, X.; Zheng, S., Global boundedness in quasilinear attraction-repulsion chemotaxis system with logistic source, Nonlinear Anal., Real World Appl., 30, 1-15 (2016) · Zbl 1365.92018
[36] Wu, S.; Shi, J.; Wu, B., Global existence of solutions to an attraction-repulsion chemotaxis model with growth, Commun. Pure Appl. Anal., 16, 1037-1058 (2017) · Zbl 1359.35098
[37] Wu, S.; Wu, B., Global boundedness in a quasilinear attraction-repulsion chemotaxis model with nonlinear sensitivity, J. Math. Anal. Appl., 442, 2, 554-582 (2016) · Zbl 1339.35068
[38] Wang, Y., A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441, 259-292 (2016) · Zbl 1338.35057
[39] Wang, W.; Zhuang, M.; Zheng, S., Positive effects of repulsion on boundedness in a fully parabolic attraction-repulsion chemotaxis system with logistic source, J. Differ. Equ., 264, 2011-2027 (2018) · Zbl 1377.35151
[40] Xiang, T., Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source, J. Differ. Equ., 258, 4275-4323 (2015) · Zbl 1323.35072
[41] Xiang, T., Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion, Commun. Pure Appl. Anal., 18, 255-284 (2019) · Zbl 1401.35189
[42] Xu, J.; Liu, Z.; Shi, S., Large time behavior of solutions for the attraction-repulsion Keller-Segel system with large initial data, Appl. Math. Lett., 87, 13-19 (2019) · Zbl 1407.35030
[43] Xu, P.; Zheng, S., Global boundedness in an attraction-repulsion chemotaxis system with logistic source, Appl. Math. Lett., 83, 1-6 (2018) · Zbl 1503.92023
[44] Zeng, Y., Existence of global bounded classical solution to a quasilinear attraction-repulsion chemotaxis system with logistic source, Nonlinear Anal., 161, 182-197 (2017) · Zbl 1469.35114
[45] Zhang, Q.; Li, Y., An attraction-repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech., 96, 5, 570-584 (2016) · Zbl 1538.35076
[46] Zheng, P.; Mu, C.; Hu, X., Boundedness in the higher dimensional attraction-repulsion chemotaxis-growth system, Comput. Math. Appl., 72, 2194-2202 (2016) · Zbl 1367.92023
[47] Zheng, P.; Mu, C.; Hu, X., Global dynamics for an attraction-repulsion chemotaxis-(Navier)-Stokes system with logistic source, Nonlinear Anal., Real World Appl., 45, 557-580 (2019) · Zbl 1420.35445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.