×

Large time behavior of solution to an attraction-repulsion chemotaxis system with logistic source in three dimensions. (English) Zbl 1366.35071

The authors consider the non-homogeneous quasilinear diffusion-transport problem in a convex bounded smooth domain in \(\mathbb R^3\). Boundary conditions are Neumann homogeneous. The source function \(f(u)=u(1-\mu u^\gamma)\), \(\gamma\geq1\), \(\mu>0\), depends on one unknown function. Global existence and asymptotic stability of a unique bounded solution are proven under assumption that initial distributions are from \(W^{1,\infty}\) and some inequalities for parameters hold. Also, convergence of the solution to the steady state in \(L^\infty\) is shown.

MSC:

35K51 Initial-boundary value problems for second-order parabolic systems
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Alikakos, N. D., \(L^p\) bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4, 827-868 (1979) · Zbl 0421.35009
[2] Baghaei, K.; Hesaaraki, M., Global existence and boundedness of classical solutions for a chemotaxis model with logistic source, C. R. Acad. Sci. Paris, Ser. I, 351, 585-591 (2013) · Zbl 1278.35248
[3] Cao, X. R., Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst. Ser. B, 35, 1891-1904 (2015) · Zbl 1515.35047
[4] Espjio, E.; Suzuki, T., Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35, 29-34 (2014) · Zbl 1375.35243
[5] Friedman, A.; Tello, J. I., Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272, 138-163 (2002) · Zbl 1025.35005
[6] Gajewski, H.; Zacharias, K., Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195, 77-114 (1998) · Zbl 0918.35064
[7] Herrero, M. A.; Velázquez, J. J.L., A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24, 633-683 (1997) · Zbl 0904.35037
[8] Hillen, T.; Painter, K. J., Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. in Appl. Math., 26, 280-301 (2001) · Zbl 0998.92006
[9] Horstmann, D.; Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12, 159-177 (2001) · Zbl 1017.92006
[10] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215, 52-107 (2005) · Zbl 1085.35065
[11] Jin, H. Y., Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422, 1463-1478 (2015) · Zbl 1307.35139
[12] Jin, H. Y.; Liu, Z., Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space, Appl. Math. Lett., 47, 13-20 (2015) · Zbl 1326.35042
[13] Jin, H. Y.; Wang, Z. A., Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38, 444-457 (2015) · Zbl 1310.35005
[14] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[15] Ladyzenskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23 (1968), American Mathematical Society · Zbl 0174.15403
[16] Li, Y., Global bounded solutions and their asymptotic properties under small initial data condition in a two-dimensional chemotaxis system for two species, J. Math. Anal. Appl., 429, 1291-1304 (2015) · Zbl 1515.35052
[17] Li, Y. H.; Lin, K.; Mu, C. L., Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system, Electron. J. Differential Equations, 146, 1-13 (2015) · Zbl 1322.35058
[18] Lin, K.; Mu, C. L., Global existence and convergence to steady states for an attraction-repulsion chemotaxis system, Nonlinear Anal. Real World Appl., 31, 630-642 (2016) · Zbl 1358.92031
[19] Lin, K.; Mu, C. L., Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst. Ser. A, 36, 5025-5046 (2016) · Zbl 1352.35067
[20] Lin, K.; Mu, C. L.; Gao, Y., Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Differential Equations, 261, 4524-4572 (2016) · Zbl 1347.35047
[21] Lin, K.; Mu, C. L.; Wang, L. C., Large-time behavior of an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426, 105-124 (2015) · Zbl 1310.35039
[22] Liu, D.; Tao, Y. S., Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38, 2537-2546 (2015) · Zbl 1331.35174
[23] Liu, J.; Wang, Z. A., Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6, 31-41 (2012) · Zbl 1452.92010
[24] Luca, M.; Chavez-Ross, A.; Edelstein-Keshet, L.; Mogilner, A., Chemotactic signalling, microglia, and Alzheimer’s disease senile plague: is there a connection?, Bull. Math. Biol., 65, 673-730 (2003) · Zbl 1334.92077
[25] Mihaela, N.; Tello, J. I., Asymptotic stability of a two species chemotaixs system with non-diffusive chemoattractant, J. Differential Equations, 258, 1592-1617 (2015) · Zbl 1310.35040
[26] Nagai, T., Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6, 37-55 (2001) · Zbl 0990.35024
[27] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M., Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51, 119-144 (2002) · Zbl 1005.35023
[28] Painter, K.; Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10, 501-543 (2002) · Zbl 1057.92013
[29] Porzio, M. M.; Vespri, V., Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103, 146-178 (1993) · Zbl 0796.35089
[30] Quittner, P.; Souplet, Ph., Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States (2007), Birkhäuser Advanced Texts: Birkhäuser Advanced Texts Basel/Boston/Berlin · Zbl 1128.35003
[31] Tao, Y.; Wang, Z. A., Competing effects of attraction vs. repulsion in chemotaxis, Math. Methods Appl. Sci., 23, 1-36 (2013) · Zbl 1403.35136
[32] Tao, Y.; Winkler, M., Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252, 2520-2543 (2012) · Zbl 1268.35016
[33] Tao, Y.; Winkler, M., Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66, 2555-2573 (2015) · Zbl 1328.35084
[34] Tao, Y.; Winkler, M., Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47, 4229-4250 (2015) · Zbl 1328.35103
[35] Wang, L. C.; Li, Y.; Mu, C. L., Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst. Ser. A, 34, 789-802 (2014) · Zbl 1277.35215
[36] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248, 2889-2905 (2010) · Zbl 1190.92004
[37] Winkler, M., Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283, 1664-1673 (2010) · Zbl 1205.35037
[38] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35, 1516-1537 (2010) · Zbl 1290.35139
[39] Winkler, M., Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384, 261-272 (2011) · Zbl 1241.35028
[40] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053
[41] Winkler, M., Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348, 708-802 (2014) · Zbl 1147.92005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.