×

Global dynamics for an attraction-repulsion chemotaxis-(Navier)-Stokes system with logistic source. (English) Zbl 1420.35445

Summary: This paper deals with an attraction-repulsion chemotaxis-(Navier)-Stokes model with logistic source \[ \begin{cases} n_t + \mathbf{u} \cdot \nabla n = \Delta n - \chi \nabla \cdot(n \nabla c) \\ + \xi \nabla \cdot(n \nabla v) + \mu n(1 - n), \qquad &(x, t) \in \Omega \times(0, \infty), \\ c_t + \mathbf{u} \cdot \nabla c = \Delta c - c + n, &\qquad (x, t) \in \Omega \times(0, \infty), \\ v_t + \mathbf{u} \cdot \nabla v = \Delta v - v + n, \qquad & (x, t) \in \Omega \times(0, \infty), \\ \mathbf{u}_t + \kappa(\mathbf{u} \cdot \nabla) \mathbf{u} = \Delta \mathbf{u} + \nabla P + n \nabla \phi, \qquad & (x, t) \in \Omega \times(0, \infty), \\ \nabla \cdot \mathbf{u} = 0, \qquad & (x, t) \in \Omega \times(0, \infty), \end{cases}. \] under homogeneous Neumann boundary conditions in a smooth bounded domain \(\Omega \subset \mathbb{R}^N\), \(N = 2, 3\), where \(\kappa \in \{0, 1 \}\), the parameters \(\chi\), \(\xi\) and\(\mu\) are positive. This system describes the evolution of cells which react on two different chemical signals in a liquid surrounding environment. The cells and chemical substances are transported by a viscous incompressible fluid under the influence of a force due to the aggregation of cells. Firstly, when \(N = 2\) and \(\kappa = 1\), based on the standard heat-semigroup argument, it is proved that for all appropriately regular nonnegative initial data and any positive parameters, this system possesses a unique global bounded solution. Secondly, when \(N = 3\) and \(\kappa = 0\), by using the maximal Sobolev regularity and semigroup technique, it is proved that the system admits a unique globally bounded classical solution provided that there exists \(\theta_0 > 0\) such that \(\frac{\chi + \xi}{\mu} < \theta_0\). Finally, by means of energy functionals, it is shown that the global bounded solution of the above system converges to the constant steady state. Furthermore, we give the precise convergence rates.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C17 Cell movement (chemotaxis, etc.)
92C37 Cell biology
76D05 Navier-Stokes equations for incompressible viscous fluids
35A09 Classical solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[2] Espejo, E.; Suzuki, T., Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35, 29-34 (2014) · Zbl 1375.35243
[3] Horstmann, D., Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21, 231-270 (2011) · Zbl 1262.35203
[4] Jin, H. Y., Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422, 1463-1478 (2015) · Zbl 1307.35139
[5] Liu, J.; Wang, Z. A., Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6, 31-41 (2012) · Zbl 1452.92010
[6] Liu, P.; Shi, J.; Wang, Z. A., Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18, 2597-2625 (2013) · Zbl 1277.35048
[7] Tao, Y.; Wang, Z. A., Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 1, 1-36 (2013) · Zbl 1403.35136
[8] Lin, K.; Mu, C.; Wang, L., Large time behavior for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426, 105-124 (2015) · Zbl 1310.35039
[9] Jin, H.; Wang, Z., Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260, 162-196 (2016) · Zbl 1323.35001
[10] Li, D.; Mu, C.; Lin, K.; Wang, L., Large time behavior of solution to an attraction-repulsion chemotaxis system with logistic source in three dimensions, J. Math. Anal. Appl., 448, 914-936 (2016) · Zbl 1366.35071
[11] Li, X., Boundedness in a two-dimensional attraction-repulsion system with nonlinear diffusion, Math. Methods Appl. Sci., 39, 289-301 (2016) · Zbl 1333.35101
[12] Li, X.; Xiang, Z., On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81, 165-198 (2016) · Zbl 1336.35338
[13] Zhang, Q.; Li, Y., An attraction-repulsion chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 96, 570-584 (2015) · Zbl 1538.35076
[14] Zheng, P.; Mu, C.; Hu, X., Boundedness in the higher dimensional attraction-repulsion chemotaxis-growth system, Comput. Math. Appl., 72, 2194-2202 (2016) · Zbl 1367.92023
[15] Wang, Y., Boundedness in a three-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion and logistic source, Electron. J. Differential Equations, 176, 1-21 (2016) · Zbl 1342.35148
[16] Shi, S.; Liu, Z.; Jin, H., Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source, Kinet. Relat. Models, 10, 855-878 (2017) · Zbl 1357.35050
[17] Wu, S.; Shi, J.; Wu, B., Global existence of solutions to an attraction-repulsion chemotaxis model with growth, Commun. Pure Appl. Anal., 16, 1037-1058 (2017) · Zbl 1359.35098
[18] Chertock, A.; Fellner, K.; Kurganov, A.; Lorz, A.; Markowich, P., Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach, J. Fluid Mech., 694, 155-190 (2012) · Zbl 1250.76191
[19] Dombrowski, C.; Cisneros, L.; Chatkaew, S.; Goldstein, R. E.; Kessler, J. O., Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., 93, Article 098103 pp. (2004)
[20] Hill, N.; Pedley, T., Bioconvection, Fluid Dyn. Res., 37, 1-20 (2005) · Zbl 1153.76455
[21] Tuval, I.; Cisneros, L.; Dombrowski, C.; Wolgemuth, C. W.; Kessler, J. O.; Goldstein, R. E., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102, 2277-2282 (2005) · Zbl 1277.35332
[22] Espejo, E.; Suzuki, T., Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal. RWA, 21, 110-126 (2015) · Zbl 1302.35102
[23] Tao, Y.; Winkler, M., Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66, 2555-2573 (2015) · Zbl 1328.35084
[24] Tao, Y.; Winkler, M., Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67, 67-138 (2016) · Zbl 1356.35054
[25] Braukhoff, M., Global (weak) solution of the chemotaxis-Navier-Stokes equations with nonhomogeneous boundary conditions and logistic growth, Ann. I.H. Poincaré-AN, 34, 1013-1039 (2017) · Zbl 1417.92028
[26] Lankeit, J., Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci., 26, 2071-2109 (2016) · Zbl 1354.35059
[27] Hirata, M.; Kurima, S.; Mizukami, M.; Yokota, T., Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics, J. Differential Equations, 263, 470-490 (2017) · Zbl 1362.35049
[28] Cao, X.; Kurima, S.; Mizukami, M., Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41, 3138-3154 (2018) · Zbl 1393.35083
[29] X. Cao, S. Kurima, M. Mizukami, Global existence and asymptotic behavior of classical solutions for a 3D two-species Keller-Segel-Stokes system with competitive kinetics, arXiv:1706.07910v1; X. Cao, S. Kurima, M. Mizukami, Global existence and asymptotic behavior of classical solutions for a 3D two-species Keller-Segel-Stokes system with competitive kinetics, arXiv:1706.07910v1 · Zbl 1393.35083
[30] Kozono, H.; Miura, M.; Sugiyama, Y., Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, J. Funct. Anal., 270, 1663-1683 (2016) · Zbl 1343.35069
[31] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-spescies chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583 (2016) · Zbl 1345.35117
[32] Winkler, M., Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37, 319-351 (2012) · Zbl 1236.35192
[33] Stinner, C.; Surulescu, C.; Winkler, M., Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46, 1967-2007 (2014) · Zbl 1301.35189
[34] Alikakos, N. D., \(L^p\) bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4, 827-868 (1979) · Zbl 0421.35009
[35] Tello, J. I.; Winkler, M., Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25, 1413-1425 (2012) · Zbl 1260.92014
[36] Hsu, S., Limiting behavior for competing species, SIAM J. Appl. Math., 34, 760-763 (1978) · Zbl 0381.92014
[37] Ladyzenskaja, O. A.; Solonnikov, V. A.; Uralceva, N. N., Linear and Quasilinear Equations of Parabolic Type (1968), AMS: AMS Providence · Zbl 0174.15403
[38] Lieberman, G. M., Second Order Parabolic Differential Equations (1996), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ · Zbl 0884.35001
[39] Y. Tao, M. Winkler, Boundedness and competitive exclusion in a population model with cross-diffusion for one species, preprint.; Y. Tao, M. Winkler, Boundedness and competitive exclusion in a population model with cross-diffusion for one species, preprint.
[40] Winkler, M., Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211, 455-487 (2014) · Zbl 1293.35220
[41] Porzio, M.; Vespri, V., Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103, 146-178 (1993) · Zbl 0796.35089
[42] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248, 2889-2905 (2010) · Zbl 1190.92004
[43] Cao, X., Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35, 1891-1904 (2015) · Zbl 1515.35047
[44] Henry, D., (Geometric Theory of Semilinear Parabolic Equations. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840 (1981), Springer-Verlag: Springer-Verlag Berlin-New York) · Zbl 0456.35001
[45] Zhang, Q.; Li, Y., Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system, Discrete Cont. Dyn. Syst. B, 20, 2751-2759 (2015) · Zbl 1334.35104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.