×

Stable branching rules for classical symmetric pairs. (English) Zbl 1069.22006

The authors reprove and generalize the (stable) branching rules for classical symmetric pairs. In other words, given an irreducible finite dimensional representation of a classical group \(G\), they decompose its restriction to a symmetric subgroup \(H\) into irreducibles. The multiplicities of this decomposition are given in terms of the Littlewood-Richardson coefficients \(c^\lambda_{\mu\nu}\). Here \(\mu\), \(\nu\) and \(\lambda\) are integer partitions with at most \(n\) parts, and the same letters denote the corresponding representations of \(\text{GL}_n\). The coefficient \(c^\lambda_{\mu\nu}\) is the multiplicity of \(\lambda\) in \(\mu\otimes\nu\). The earliest results of this kind are due to Littlewood, for the cases \(\text{O}_n\subseteq \text{GL}_n\) and \(\text{Sp}_{2n}\subseteq \text{GL}_{2n}\). The authors of the present paper study 10 families of symmetric pairs. The main novelty in their approach is the use of the language of dual pairs developed by R. Howe. This enables them to apply a uniform approach to all 10 families under consideration. One of the main techniques in the proofs is the use of the notion of see-saw pairs of Kudla. This enables one to pass from one dual pair to another related pair.

MSC:

22E46 Semisimple Lie groups and their representations

References:

[1] J. Abramsky, Ph.D. thesis, The University of Southampton, England, 1969.
[2] G. R. E. Black, R. C. King, and B. G. Wybourne, Kronecker products for compact semisimple Lie groups, J. Phys. A 16 (1983), no. 8, 1555 – 1589. · Zbl 0522.22012
[3] Y. M. Chen, A. M. Garsia, and J. Remmel, Algorithms for plethysm, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 109 – 153. · Zbl 0556.20013 · doi:10.1090/conm/034/777698
[4] Thomas Enright, Roger Howe, and Nolan Wallach, A classification of unitary highest weight modules, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 97 – 143. · Zbl 0535.22012
[5] Thomas J. Enright and Jeb F. Willenbring, Hilbert series, Howe duality, and branching rules, Proc. Natl. Acad. Sci. USA 100 (2003), no. 2, 434 – 437. · Zbl 1065.22008 · doi:10.1073/pnas.0136632100
[6] Thomas J. Enright and Jeb F. Willenbring, Hilbert series, Howe duality and branching for classical groups, Ann. of Math. (2) 159 (2004), no. 1, 337 – 375. · Zbl 1087.22011 · doi:10.4007/annals.2004.159.337
[7] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. · Zbl 0878.14034
[8] Roe Goodman and Nolan R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998. · Zbl 0901.22001
[9] Kenneth I. Gross and Ray A. Kunze, Finite-dimensional induction and new results on invariants for classical groups. I, Amer. J. Math. 106 (1984), no. 4, 893 – 974. · Zbl 0567.22007 · doi:10.2307/2374328
[10] Harish-Chandra, Representations of semisimple Lie groups. IV, Amer. J. Math. 77 (1955), 743 – 777. , https://doi.org/10.2307/2372596 Harish-Chandra, Representations of semisimple Lie groups. V, Amer. J. Math. 78 (1956), 1 – 41. , https://doi.org/10.2307/2372481 Harish-Chandra, Representations of semisimple Lie groups. VI. Integrable and square-integrable representations, Amer. J. Math. 78 (1956), 564 – 628. · Zbl 0072.01702 · doi:10.2307/2372674
[11] Roger Howe, Reciprocity laws in the theory of dual pairs, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 159 – 175.
[12] Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539 – 570. , https://doi.org/10.1090/S0002-9947-1989-0986027-X Roger Howe, Erratum to: ”Remarks on classical invariant theory”, Trans. Amer. Math. Soc. 318 (1990), no. 2, 823. · Zbl 0674.15021
[13] Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535 – 552. · Zbl 0716.22006
[14] Roger Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1 – 182. · Zbl 0194.53802 · doi:10.1007/BF02771542
[15] R. Howe, E-C. Tan and J. Willenbring, Reciprocity algebras and branching for classical symmetric pairs, in preparation. · Zbl 1176.22012
[16] Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. · Zbl 0491.20010
[17] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1 – 47. · Zbl 0375.22009 · doi:10.1007/BF01389900
[18] R. C. King, Generalized Young tableaux and the general linear group, J. Mathematical Phys. 11 (1970), 280 – 293. · Zbl 0199.34604 · doi:10.1063/1.1665059
[19] R. C. King, Modification rules and products of irreducible representations of the unitary, orthogonal, and symplectic groups, J. Mathematical Phys. 12 (1971), 1588 – 1598. · Zbl 0239.20061 · doi:10.1063/1.1665778
[20] R. C. King, Branching rules for classical Lie groups using tensor and spinor methods, J. Phys. A 8 (1975), 429 – 449. · Zbl 0301.20029
[21] Ronald C. King, \?-functions and characters of Lie algebras and superalgebras, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 226 – 261.
[22] R. C. King, F. Toumazet, and B. G. Wybourne, Products and symmetrized powers of irreducible representations of \?\?*(2\?), J. Phys. A 31 (1998), no. 31, 6691 – 6705. · Zbl 1047.81521 · doi:10.1088/0305-4470/31/31/014
[23] R. C. King and B. G. Wybourne, Holomorphic discrete series and harmonic series unitary irreducible representations of noncompact Lie groups: \?\?(2\?,\?), \?(\?,\?) and \?\?*(2\?), J. Phys. A 18 (1985), no. 16, 3113 – 3139. · Zbl 0571.22017
[24] Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. · Zbl 0604.22001
[25] A. W. Knapp, Branching theorems for compact symmetric spaces, Represent. Theory 5 (2001), 404 – 436. · Zbl 0990.22010
[26] Anthony W. Knapp, Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. · Zbl 1075.22501
[27] A. W. Knapp, Geometric interpretations of two branching theorems of D. E. Littlewood, J. Algebra 270 (2003), no. 2, 728 – 754. · Zbl 1038.22005 · doi:10.1016/j.jalgebra.2002.11.001
[28] Kazuhiko Koike, On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters, Adv. Math. 74 (1989), no. 1, 57 – 86. · Zbl 0681.20030 · doi:10.1016/0001-8708(89)90004-2
[29] Kazuhiko Koike and Itaru Terada, Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. Math. 79 (1990), no. 1, 104 – 135. · Zbl 0698.22013 · doi:10.1016/0001-8708(90)90059-V
[30] Stephen S. Kudla, Seesaw dual reductive pairs, Automorphic forms of several variables (Katata, 1983) Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 244 – 268. · Zbl 0549.10017
[31] D. E. Littlewood, On invariant theory under restricted groups, Philos. Trans. Roy. Soc. London. Ser. A. 239 (1944), 387 – 417. · Zbl 0060.04403 · doi:10.1098/rsta.1944.0003
[32] D. Littlewood, Theory of Group Characters, Clarendon Press, Oxford, 1945.
[33] D. E. Littlewood, Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Canad. J. Math. 10 (1958), 17 – 32. · Zbl 0079.03604 · doi:10.4153/CJM-1958-002-7
[34] I. G. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. · Zbl 0487.20007
[35] M. J. Newell, Modification rules for the orthogonal and symplectic groups, Proc. Roy. Irish Acad. Sect. A. 54 (1951), 153 – 163. · Zbl 0044.25802
[36] Bent Ørsted and Genkai Zhang, Tensor products of analytic continuations of holomorphic discrete series, Canad. J. Math. 49 (1997), no. 6, 1224 – 1241. · Zbl 0907.22017 · doi:10.4153/CJM-1997-060-5
[37] Robert A. Proctor, Young tableaux, Gel\(^{\prime}\)fand patterns, and branching rules for classical groups, J. Algebra 164 (1994), no. 2, 299 – 360. · Zbl 0809.20030 · doi:10.1006/jabr.1994.1064
[38] Joe Repka, Tensor products of holomorphic discrete series representations, Canad. J. Math. 31 (1979), no. 4, 836 – 844. · Zbl 0373.22006 · doi:10.4153/CJM-1979-079-9
[39] D. J. Rowe, B. G. Wybourne, and P. H. Butler, Unitary representations, branching rules and matrix elements for the noncompact symplectic groups, J. Phys. A 18 (1985), no. 6, 939 – 953. · Zbl 0577.22020
[40] Bruce E. Sagan, The symmetric group, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991. Representations, combinatorial algorithms, and symmetric functions. · Zbl 0823.05061
[41] Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/1970), 61 – 80 (German). · Zbl 0219.32013 · doi:10.1007/BF01389889
[42] Wilfried Schmid, On the characters of the discrete series. The Hermitian symmetric case, Invent. Math. 30 (1975), no. 1, 47 – 144. · Zbl 0324.22007 · doi:10.1007/BF01389847
[43] Richard P. Stanley, The stable behavior of some characters of \?\?(\?,\?), Linear and Multilinear Algebra 16 (1984), no. 1-4, 3 – 27. · Zbl 0573.20042 · doi:10.1080/03081088408817606
[44] Richard P. Stanley, Enumerative combinatorics. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. With a foreword by Gian-Carlo Rota. · Zbl 0608.05001
[45] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. · Zbl 0928.05001
[46] Sheila Sundaram, Tableaux in the representation theory of the classical Lie groups, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 191 – 225.
[47] Jean-Yves Thibon, Frédéric Toumazet, and Brian G. Wybourne, Products and plethysms for the fundamental harmonic series representations of \?(\?,\?), J. Phys. A 30 (1997), no. 13, 4851 – 4856. · Zbl 0928.22015 · doi:10.1088/0305-4470/30/13/032
[48] Hermann Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939. · Zbl 0020.20601
[49] Компактные группы Ли и их представления., Издат. ”Наука”, Мосцощ, 1970 (Руссиан). Д. П. Žелобенко, Цомпацт Лие гроупс анд тхеир репресентатионс, Америцан Матхематицал Социеты, Провиденце, Р.И., 1973. Транслатед фром тхе Руссиан бы Исраел Програм фор Сциентифиц Транслатионс; Транслатионс оф Матхематицал Монограпхс, Вол. 40.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.