×

Probabilistic process algebra to unifying quantum and classical computing in closed systems. (English) Zbl 1428.81062

Summary: We have unified quantum and classical computing in open quantum systems called qACP which is a quantum generalization of process algebra ACP. But, an axiomatization of quantum and classical processes with an assumption of closed quantum systems is still missing. For closed quantum systems, unitary operator, quantum measurement and quantum entanglement are three basic components of quantum computing. This leads to probability unavoidable. Along the solution of qACP to unify quantum and classical computing in open quantum systems, we unify quantum and classical computing with an assumption of closed systems under the framework of ACP-like probabilistic process algebra. This unification make it can be used widely in verification of quantum and classical computing mixed systems, such as most quantum communication protocols.

MSC:

81P68 Quantum computation
68W01 General topics in the theory of algorithms
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)

References:

[1] Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. Process Algebra 335(2-3), 131-146 (2005) · Zbl 1080.68072 · doi:10.1016/j.tcs.2004.07.036
[2] Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989) · Zbl 0683.68008
[3] Hoare, C.A.R.: Communicating sequential processes. http://www.usingcsp.com/ (1985) · Zbl 0637.68007
[4] Fokkink, W.: Introduction to Process Algebra, 2nd edn. Springer, Berlin (2007) · Zbl 0941.68087
[5] Andova, S.: Probabilistic process algebra. Ann. Oper. Res. 128, 204-219 (2002) · Zbl 0978.68100
[6] Feng, Y., Duan, R.Y., Ji, Z.F., Ying, M.S.: Probabilistic bisimulations for quantum processes. Inf. Comput. 2007(205), 1608-1639 (2007) · Zbl 1130.68079 · doi:10.1016/j.ic.2007.08.001
[7] Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Proceedings of the 32nd ACM Symposium on Principles of Programming Languages, Long Beach, California, USA, pp. 145-157. ACM Press (2005) · Zbl 1369.68207
[8] Gay, S.J., Nagarajan, R.: Typechecking communicating quantum processes. Math. Struct. Comput. Sci. 2006(16), 375-406 (2006) · Zbl 1122.68059 · doi:10.1017/S0960129506005263
[9] Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the 1st ACM Conference on Computing Frontiers, Ischia, Italy, pp. 111-119. ACM Press (2005)
[10] Jorrand, P., Lalire, M.: From quantum physics to programming languages: a process algebraic approach. Lect. Notes Comput. Sci 2005(3566), 1-16 (2005)
[11] Lalire, M.: Relations among quantum processes: bisimilarity and congruence. Math. Struct. Comput. Sci. 2006(16), 407-428 (2006) · Zbl 1122.68060 · doi:10.1017/S096012950600524X
[12] Lalire, M., Jorrand, P.: A process algebraic approach to concurrent and distributed quantum computation: operational semantics. In: Proceedings of the 2nd International Workshop on Quantum Programming Languages, pp. 109-126. TUCS General Publications (2004)
[13] Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM Trans. Comput. Logic (TOCL) 10(3), 1-36 (2009) · Zbl 1351.68187 · doi:10.1145/1507244.1507249
[14] Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353-389 (1995) · Zbl 0874.68187 · doi:10.1016/0304-3975(94)00172-F
[15] Feng, Y., Duan, R., Ying, M.: Bisimulations for quantum processes. In: Proceedings of the 38th ACM Symposium on Principles of Programming Languages (POPL 11), pp. 523-534. ACM Press (2011) · Zbl 1284.68425
[16] Deng, Y., Feng, Y.: Open bisimulation for quantum processes. Manuscript, arXiv:1201.0416 (2012) · Zbl 1362.68210
[17] Feng, Y., Deng, Y., Ying, M.: Symbolic bisimulation for quantum processes. Manuscript, arXiv:1202.3484 (2012)
[18] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[19] Wang, Y.: An axiomatization for quantum processes to unifying quantum and classical computing. Submitted to ACM TOCL, arXiv:1311.2960 (2016)
[20] Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computer,Systems and Signal Processing, pp. 175-179 (1984) · Zbl 1306.81030
[21] Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661-663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[22] Plotkin, G.D.: A structural approach to operational semantics. Aarhus University, Tech Report DAIMIFN-19 (1981)
[23] Wang, Y.: Entanglement in quantum process algebra. Submitted to FAOC, arXiv:1404.0665 (2016)
[24] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and epr channels. Phys. Rev. Lett. 70, 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.