Skip to main content
Log in

Probabilistic Process Algebra to Unifying Quantum and Classical Computing in Closed Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We have unified quantum and classical computing in open quantum systems called qACP which is a quantum generalization of process algebra ACP. But, an axiomatization of quantum and classical processes with an assumption of closed quantum systems is still missing. For closed quantum systems, unitary operator, quantum measurement and quantum entanglement are three basic components of quantum computing. This leads to probability unavoidable. Along the solution of qACP to unify quantum and classical computing in open quantum systems, we unify quantum and classical computing with an assumption of closed systems under the framework of ACP-like probabilistic process algebra. This unification make it can be used widely in verification of quantum and classical computing mixed systems, such as most quantum communication protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. Process Algebra 335(2–3), 131–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  3. Hoare, C.A.R.: Communicating sequential processes. http://www.usingcsp.com/ (1985)

  4. Fokkink, W.: Introduction to Process Algebra, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  5. Andova, S.: Probabilistic process algebra. Ann. Oper. Res. 128, 204–219 (2002)

    MATH  Google Scholar 

  6. Feng, Y., Duan, R.Y., Ji, Z.F., Ying, M.S.: Probabilistic bisimulations for quantum processes. Inf. Comput. 2007(205), 1608–1639 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Proceedings of the 32nd ACM Symposium on Principles of Programming Languages, Long Beach, California, USA, pp. 145–157. ACM Press (2005)

  8. Gay, S.J., Nagarajan, R.: Typechecking communicating quantum processes. Math. Struct. Comput. Sci. 2006(16), 375–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the 1st ACM Conference on Computing Frontiers, Ischia, Italy, pp. 111–119. ACM Press (2005)

  10. Jorrand, P., Lalire, M.: From quantum physics to programming languages: a process algebraic approach. Lect. Notes Comput. Sci 2005(3566), 1–16 (2005)

    Google Scholar 

  11. Lalire, M.: Relations among quantum processes: bisimilarity and congruence. Math. Struct. Comput. Sci. 2006(16), 407–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lalire, M., Jorrand, P.: A process algebraic approach to concurrent and distributed quantum computation: operational semantics. In: Proceedings of the 2nd International Workshop on Quantum Programming Languages, pp. 109–126. TUCS General Publications (2004)

  13. Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM Trans. Comput. Logic (TOCL) 10(3), 1–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hennessy, M., Lin, H.: Symbolic bisimulations. Theor. Comput. Sci. 138(2), 353–389 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, Y., Duan, R., Ying, M.: Bisimulations for quantum processes. In: Proceedings of the 38th ACM Symposium on Principles of Programming Languages (POPL 11), pp. 523–534. ACM Press (2011)

  16. Deng, Y., Feng, Y.: Open bisimulation for quantum processes. Manuscript, arXiv:1201.0416 (2012)

  17. Feng, Y., Deng, Y., Ying, M.: Symbolic bisimulation for quantum processes. Manuscript, arXiv:1202.3484 (2012)

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Wang, Y.: An axiomatization for quantum processes to unifying quantum and classical computing. Submitted to ACM TOCL, arXiv:1311.2960 (2016)

  20. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computer,Systems and Signal Processing, pp. 175–179 (1984)

  21. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Plotkin, G.D.: A structural approach to operational semantics. Aarhus University, Tech Report DAIMIFN-19 (1981)

  23. Wang, Y.: Entanglement in quantum process algebra. Submitted to FAOC, arXiv:1404.0665 (2016)

  24. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and epr channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Probabilistic Process Algebra to Unifying Quantum and Classical Computing in Closed Systems. Int J Theor Phys 58, 3436–3509 (2019). https://doi.org/10.1007/s10773-019-04216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04216-2

Keywords

Navigation