×

Communicating quantum processes. (English) Zbl 1369.68207

Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL ’05, Long Beach, CA, USA, January 12–14, 2005. New York, NY: Association for Computing Machinery (ACM) (ISBN 1-58113-830-X). 145-157 (2005).

MSC:

68Q05 Models of computation (Turing machines, etc.) (MSC2010)
68Q10 Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)
68Q60 Specification and verification (program logics, model checking, etc.)
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
81P68 Quantum computation

References:

[1] CWB-NC: www.cs.sunysb.edu/ cwb.
[2] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings, Nineteenth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, 2004. 10.1109/LICS.2004.1
[3] C. H. Bennett and G. Brassard. Quantum Cryptography: Public-key Distribution and Coin Tossing. In Proceedings of the IEEE International Conference on Computer, Systems and Signal Processing, Bangalore, India, pages 175-179, 1984.
[4] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895-1899, 1993. · Zbl 1051.81505
[5] D. Cazorla, F. Cuartero, V. Valero, F. L. Pelayo, and J. J. Pardo. Algebraic theory of probabilistic and nondeterministic processes. Journal of Logic and Algebraic Programming, 55:57-103, 2003. · Zbl 1054.68091
[6] H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, and N. Gisin. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett., 92(4), 2004.
[7] R. Ennals, R. Sharp, and A. Mycroft. Linear types for packet processing. In D. Schmidt, editor, ESOP 2004: Proceedings of the European Symposium on Programming, volume 2986 of Lecture Notes in Computer Science. Springer-Verlag, 2004. · Zbl 1126.68322
[8] J. Gruska. Quantum Computing. McGraw-Hill, 1999.
[9] P. Jorrand and M. Lalire. A process-algebraic approach to concurrent and distributed quantum computation: operational semantics. In P. Selinger, editor, Proceedings of the 2nd International Workshop on Quantum Programming Languages, 2004. Also in Quantum Physics Archive: arXiv:quant-ph/0407005.
[10] E. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-2724, Los Alamos National Laboratory, 1996.
[11] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-Calculus. ACM Transactions on Programming Languages and Systems, 21(5):914-947, September 1999. 10.1145/330249.330251
[12] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Computer Performance Evaluation (TOOLS’02), pages 200-204. Springer-Verlag, 2002. · Zbl 1047.68533
[13] D. Mayers. Unconditional Security in Quantum Cryptography. Journal of the ACM, 48(3):351-406, May 2001. 10.1145/382780.382781 · Zbl 1323.94128
[14] D. A. Meyer. Quantum strategies. Physical Review Letters, 82(5), 1999. · Zbl 0958.81007
[15] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Information and Computation, 100(1):1-77, September 1992. 10.1016/0890-5401(92)90008-4
[16] R. Nagarajan and S. J. Gay. Formal verification of quantum protocols. Quantum Physics Archive: arXiv:quant-ph/0203086, March 2002.
[17] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000. · Zbl 1049.81015
[18] B. Ömer. Quantum programming in QCL. Master’s thesis, Technical University of Vienna, 2000.
[19] N. Papanikolaou. Techniques for design and validation of quantum protocols. Master’s thesis, University of Warwick, 2004.
[20] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical Structures in Computer Science, 6(5), 1996. · Zbl 0861.68030
[21] A. Poppe, A. Fedrizzi, T. Lorünser, O. Maurhardt, R. Ursin, H. R. Böhm, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger. Practical quantum key distribution with polarization entangled photons. Quantum Physics Archive: arXiv:quant-ph/0404115, 2004.
[22] E. G. Rieffel and W. Polak. An introduction to quantum computing for non-physicists. ACM Computing Surveys, 32(3):300-335, 2000. 10.1145/367701.367709
[23] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and Analysis of Security Protocols. Addison-Wesley, 2001.
[24] J. W. Sanders and P. Zuliani. Quantum programming. In Mathematics of Program Construction, volume 1837 of Springer LNCS, 2000. · Zbl 0963.68037
[25] D. Sangiorgi and D. Walker. The φ-calculus: a Theory of Mobile Processes. Cambridge University Press, 2001. · Zbl 0981.68116
[26] P. Selinger. Towards a quantum programming language. Mathematical Structures in Computer Science, 14(4):527-586, 2004. 10.1017/S0960129504004256 · Zbl 1085.68014
[27] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system. In C. Halatsis, D. G. Maritsas, G. Philokyprou, and S. Theodoridis, editors, PARLE ’94: Parallel Architectures and Languages Europe, 6th International PARLE Conference, Proceedings, volume 817 of Lecture Notes in Computer Science. Springer-Verlag, 1994.
[28] B. Valiron. Quantum typing. In P. Selinger, editor, Proceedings of the Second International Workshop on Quantum Programming Languages, 2004.
[29] A. van Tonder. A lambda calculus for quantum computation. SIAM Journal on Computing, 33(5):1109-1135, 2004. 10.1137/S0097539703432165 · Zbl 1057.81016
[30] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and Computation, 115(1):38-94, 1994. 10.1006/inco.1994.1093 · Zbl 0938.68559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.