×

Minimal two-spheres of low index in manifolds with positive complex sectional curvature. (English) Zbl 1428.53074

Authors’ abstract: Suppose that \(S^n\) is given a generic Riemannian metric with sectional curvatures which satisfy a suitable pinching condition formulated in terms of complex sectional curvatures. This pinching condition is satisfied by manifolds whose real sectional curvatures \(K_r(\sigma )\) satisfy \(1/2 < K_r(\sigma ) \le 1.\) Then the number of minimal two spheres of Morse index \(\lambda\), for \(n-2 \le \lambda \le 2n-5\), is at least \(p_{3}(\lambda -n+2)\), where \(p_{3}(k)\) is the number of \(k\)-cells in the Schubert cell decomposition for \(G_3({\mathbb {R}}^{n+1})\).

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C20 Global Riemannian geometry, including pinching
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

References:

[1] Ballmann, W., Thorbergsson, G., Ziller, W.: Existence of closed geodesics on positively curved manifolds. J. Differ. Geom. 18, 221-252 (1983) · Zbl 0514.53044 · doi:10.4310/jdg/1214437662
[2] Berger, M.: Sur quelques variétés riemanniennes suffisamment pincées. Bull. SMF 88, 57-71 (1960) · Zbl 0096.15503
[3] Bott, R.: Lectures on Morse theory, old and new. Bull. Am. Math. Soc. 7, 331-358 (1982) · Zbl 0505.58001 · doi:10.1090/S0273-0979-1982-15038-8
[4] Brendle, S., Schoen, R.: Manifolds with \[1/41/4\] pinched curvature are space forms. J. Am. Math. Soc. 22, 287-307 (2009) · Zbl 1251.53021 · doi:10.1090/S0894-0347-08-00613-9
[5] Brendle, S., Schoen, R.: Curvature, sphere theorems and the Ricci flow. Bull. Am. Math. Soc. 48, 1-32 (2011) · Zbl 1251.53020 · doi:10.1090/S0273-0979-2010-01312-4
[6] Calabi, E.: Minimal immersions of surfaces in Euclidean spheres. J. Differ. Geom. 1, 111-125 (1967) · Zbl 0171.20504 · doi:10.4310/jdg/1214427884
[7] Chen, J., Tian, G.: Compactification of moduli space of harmonic mapping. Comment. Math. Helv. 74, 201-237 (1999) · Zbl 0958.53047 · doi:10.1007/s000140050086
[8] Chern, S.S.: On minimal spheres in the four-sphere. In: Studies and Essays Presented to Yu-why Chen on his 60th Birthday, pp. 137-150. Mathematics Research Center, National Taiwan University, Taipei (1970) · Zbl 0212.26402
[9] Choi, H., Schoen, R.: The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature. Invent. Math. 81, 387-394 (1975) · Zbl 0577.53044 · doi:10.1007/BF01388577
[10] Colding, T., Minicozzi, W.: A Course in Minimal Surfaces. Graduate Studies in Mathematics, vol. 121. AMS, Providence (2011) · Zbl 1242.53007
[11] Duistermaat, J., Kolk, J.: Lie Groups. Springer, New York (2000) · Zbl 0955.22001 · doi:10.1007/978-3-642-56936-4
[12] Eells, J.: A setting for global analysis. Bull. Am. Math. Soc. 72, 751-807 (1966) · doi:10.1090/S0002-9904-1966-11558-6
[13] Ejiri, N.: The index of minimal immersions of \[S^2\] S2 into \[S^{2n}\] S2n. Math. Z. 184, 127-132 (1983) · Zbl 0517.53056 · doi:10.1007/BF01162011
[14] Gromoll, D., Klingenberg, W., Meyer, W.: Riemannian Geometrie im Grossen. Springer Lecture Notes, vol. 55. Springer, Berlin (1968) · Zbl 0155.30701
[15] Grothendieck, A.: Sur la classification des fibres holomorphes sur la sphere de Riemann. Am. J. Math. 79, 121-138 (1957) · Zbl 0079.17001 · doi:10.2307/2372388
[16] Gunning, R.: Lectures on Riemann Surfaces. Princeton University Press, Princeton (1966) · Zbl 0175.36801
[17] Hingston, N.: Equivariant Morse theory and closed geodesics. J. Differ. Geom. 19, 85-116 (1978) · Zbl 0561.58007 · doi:10.4310/jdg/1214438424
[18] Hirsch, M.: Differential Topology. Springer, New York (1976) · Zbl 0356.57001 · doi:10.1007/978-1-4684-9449-5
[19] Korevaar, N.: Upper bounds for eigenvalues of conformal metrics. J. Differ. Geom. 37, 73-93 (1993) · Zbl 0794.58045 · doi:10.4310/jdg/1214453423
[20] Koszul, J.-L., Malgrange, B.: Sur certaines structure fibrés complexes. Arch. Math. 9, 102-109 (1958) · Zbl 0083.16705 · doi:10.1007/BF02287068
[21] Lang, S.: Differential and Riemannian Manifolds. Springer, New York (1996)
[22] Li, P., Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309-318 (1983) · Zbl 0554.35029 · doi:10.1007/BF01213210
[23] McCleary, J.: A User’s Guide to Spectral Sequences, 2nd edn. Cambridge University Press, Cambridge (2000) · Zbl 0959.55001 · doi:10.1017/CBO9780511626289
[24] Micallef, M., Moore, J.D.: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math. 127, 199-227 (1988) · Zbl 0661.53027 · doi:10.2307/1971420
[25] Milnor, J.: Morse Theory. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963) · Zbl 0108.10401
[26] Milnor, J.: Lectures on the \[h\] h-Cobordism Theorem. Princeton University Press, Princeton (1965) · Zbl 0161.20302 · doi:10.1515/9781400878055
[27] Milnor, J.: Geometry and dynamics of quadratic rational maps. Exp. Math. 2, 37-83 (1993) · Zbl 0922.58062 · doi:10.1080/10586458.1993.10504267
[28] Milnor, J., Stasheff, J.: Characteristic Classes. Princeton University Press, Princeton (1974) · Zbl 0298.57008
[29] Moore, J.D.: On the number of minimal two-spheres of small area in manifolds with curvature bounded above. Math. Ann. 288, 323-343 (1990) · Zbl 0694.53053 · doi:10.1007/BF01444536
[30] Moore, J.D.: Bumpy Riemannian metrics and closed parametrized minimal surfaces in Riemannian manifolds. Trans. Am. Math. Soc. 358, 5193-5296 (2006) · Zbl 1126.53031 · doi:10.1090/S0002-9947-06-04317-0
[31] Moore, J.D.: Lectures on Global Analysis: Minimal Surfaces in Riemannian Manifolds. Graduate Studies in Mathematics, vol. 187. American Mathematical Society, Providence (2017) · Zbl 1484.53002
[32] Palais, R.: Lusternik-Schnirelmann theory on Banach manifolds. Topology 5, 115-132 (1966) · Zbl 0143.35203 · doi:10.1016/0040-9383(66)90013-9
[33] Parker, T.: Bubble tree convergence for harmonic maps curvature flow. J. Differ. Geom. 44, 595-633 (1996) · Zbl 0874.58012 · doi:10.4310/jdg/1214459224
[34] Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of \[22\]-spheres. Ann. Math. 113, 1-24 (1981) · Zbl 0462.58014 · doi:10.2307/1971131
[35] Schwarz, M.: Morse Homology. Birkhäuser, Basel (1993) · Zbl 0806.57020 · doi:10.1007/978-3-0348-8577-5
[36] Smale, S.: An infinite-dimensional version of Sard’s theorem. Am. J. Math. 87, 861-866 (1966) · Zbl 0143.35301 · doi:10.2307/2373250
[37] Uhlenbeck, K.: Morse theory on Banach manifolds. J. Funct. Anal. 10, 430-445 (1972) · Zbl 0241.58002 · doi:10.1016/0022-1236(72)90039-0
[38] Wasserman, A.G.: Equivariant differential topology. Topology 8, 127-150 (1969) · Zbl 0215.24702 · doi:10.1016/0040-9383(69)90005-6
[39] Wolf, J.: Spaces of Constant Curvature. McGraw-Hill, New York (1967) · Zbl 0162.53304
[40] Yang, P., Yau, S.T.: Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Annali Scuola Normale Superiore Pisa 7, 55-63 (1980) · Zbl 0446.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.