×

The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature. (English) Zbl 0577.53044

Let N be a compact 3-dimensional Riemannian manifold with positive Ricci curvature. It is proved that there is a constant C depending only on N and an integer \(\chi\) such that if M is a compact embedded minimal surface in N with Euler characteristic \(\chi\), then max \(\| A\| \leq C\), where \(\| A\|\) is the length of the second fundamental form. The proof is based on the following compactness theorem: The space of compact embedded minimal surfaces of fixed topological type in N is compact in the \(C^ k\) topology for any \(k\geq 2\). Furthermore, if N is real analytic, then this space is a compact finite-dimensional real analytic variety.
Reviewer: G.Thorbergsson

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

References:

[1] [A] Allard, W.K.: On the first variation of a varifold. Ann. Math.95, 417-491 (1972) · Zbl 0252.49028 · doi:10.2307/1970868
[2] [AA] Allard, W.K., Almgren, Jr., F.J.: On the radial behavior of minimal surfaces and the uniqueness of their tangent cones. Ann. Math.113, 215-265 (1981) · doi:10.2307/2006984
[3] [An] Anderson, M.: Curvature estimates for minimal surfaces in 3-manifold. Preprint
[4] [B] Bryant, R.: Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Diff. Geom.17, 455-474 (1982) · Zbl 0498.53046
[5] [CW] Choi, H.I., Wang, A.N.: A first eigenvalue estimate for minimal hypersurfaces. J. Diff. Geom.18, 559-562 (1983) · Zbl 0523.53055
[6] [F] Frankel, T.: On the fundamental group of a compact minimal submanifold. Ann. Math.83, 68-73 (1966) · Zbl 0189.22401 · doi:10.2307/1970471
[7] [G1] Gulliver, R.: Regularity of minimizing surfaces of prescribed mean curvature. Ann. Math.97, 275-305 (1973) · Zbl 0246.53053 · doi:10.2307/1970848
[8] [G2] Gulliver, R.: Removability of singular points on surfaces of bounded mean curvature. J. Diff. Geom.11, 345-350 (1976) · Zbl 0354.53004
[9] [HKW] Hildebrandt, S., Kaul, H., Widman, K.-O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math.138, 1-16 (1977) · Zbl 0356.53015 · doi:10.1007/BF02392311
[10] [M] Morrey, C.B.: Multiple integrals in the calculus of variations. Berlin-Heidelberg-New York: Springer 1969 · Zbl 1213.49002
[11] [MY] Meek, III, W.H., Yau, S.T.: The classical Plateua problem and the topology of three-dimensional manifolds. Topology21, 409-442 (1982) · Zbl 0489.57002 · doi:10.1016/0040-9383(82)90021-0
[12] [O] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Amer. J. Math.92, 145-173 (1970) · Zbl 0196.25102 · doi:10.2307/2373502
[13] [S] Sampson, J.H.: Some properties and applications of harmonic mappings. Ann. Sci. Ec. Norm. Sup11, 211-228 (1978) · Zbl 0392.31009
[14] [SS] Schoen, R., Simon, L.: Regularity of simply connected surfaces with quasiconformal Gauss map. Ann. Math. Stud. Vol. 103, pp. 127-145. Princeton University Press (1983) · Zbl 0544.53001
[15] [SSY] Schoen, R., Simon, L., Yau, S.T.: Curvature estimates for minimal hypersurfaces. Acta Math.134, 275-288 (1975) · Zbl 0323.53039 · doi:10.1007/BF02392104
[16] [SU] Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math.113 1-24 (1981) · Zbl 0462.58014 · doi:10.2307/1971131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.