×

Open Gromov-Witten theory and the crepant resolution conjecture. (English) Zbl 1273.14111

In this paper the authors combine two important aspects of Gromov-Witten (GW) theory, which they refer to as “Crepant transformation” and “Gluing”. In their own words (in “Summary of results”) these mean:
“Crepant transformation: the equivalence between GW theories of two targets related by a crepant birational transformation. In particular, when the crepant transformation is the resolution of singularities of a Gorenstein orbifold, this equivalence is referred to as the crepant resolution conjecture (CRC)”
“Gluing: the ability to recover GW invariants for a toric variety/orbifold from open invariants of open subspaces covering the target.”
The interplay between these two ideas is presented in all details in the example of a specific geometry, so that, by combining crepant transformation and gluing, Gromov-Witten invariants of \(X=\mathcal{O}_{\mathbb{P}^1}(-1) \otimes \mathcal{O}_{\mathbb{P}^1}(-1) / \mathbb{Z}_2\) are computed. In the process the authors prove four theorems for related geometries, which concern: crepant resolution conjecture for the open GW invariants, Ruan’s crepant resolution conjecture for closed GW invariants, and gluing of \(X\) and of its crepant resolution from appropriate open invariants. The paper combines several independent ideas in a nice unified context, and can be recommended not only to mathematicians (and algebraic geometers in particular), but also to mathematical and theoretical physicists (interested in the areas of topological string theory, topological vertex, etc.).

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)

References:

[1] M. Aganagic, A. Klemm, M. Mariño, and C. Vafa, The topological vertex, Comm. Math. Phys. 254 (2005), 425-478. · Zbl 1114.81076 · doi:10.1007/s00220-004-1162-z
[2] M. Aganagic, A. Klemm, and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A 57 (2002), 1-28. · Zbl 1203.81153
[3] A. Bertram, R. Cavalieri, and G. Todorov, Evaluating tautological classes using only Hurwitz numbers, Trans. Amer. Math. Soc. 360 (2008), 6103-6111. · Zbl 1160.14043 · doi:10.1090/S0002-9947-08-04481-4
[4] A. Brini, Open topological strings and integrable hierarchies: Remodeling the A-model, Comm. Math. Phys. 312 (2012), 735-780. · Zbl 1276.14055 · doi:10.1007/s00220-012-1489-9
[5] A. Brini and R. Cavalieri, Open orbifold Gromov-Witten invariants of \([{\mathbb C}^{3}/{\mathbb Z}_{n}]\): Localization and mirror symmetry, Selecta Math. (N.S.) 17 (2011), 879-933. · Zbl 1236.14046 · doi:10.1007/s00029-011-0060-4
[6] J. Bryan, C. Cadman, and B. Young, The orbifold topological vertex, Adv. Math. 229 (2012), 531-595. · Zbl 1250.14027 · doi:10.1016/j.aim.2011.09.008
[7] J. Bryan and A. Gholampour, Hurwitz-Hodge integrals, the \(E_{6}\) and \(D_4\) root systems, and the crepant resolution conjecture, Adv. Math. 221 (2009), 1047-1068. · Zbl 1228.14044 · doi:10.1016/j.aim.2009.02.004
[8] J. Bryan and T. Graber, The crepant resolution conjecture, Algebraic geometry (Seattle, 2005), Proc. Sympos. Pure Math., 80, pp. 23-42, Amer. Math. Soc., Providence, RI, 2009. · Zbl 1198.14053
[9] J. Bryan, T. Graber, and R. Pandharipande, The orbifold quantum cohomology of \({\mathbb C}^{2}/Z_{3}\) and Hurwitz-Hodge integrals, J. Algebraic Geom. 17 (2008), 1-28. · Zbl 1129.14075 · doi:10.1090/S1056-3911-07-00467-5
[10] J. Bryan and R. Pandharipande, The local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008), 101-136. · Zbl 1126.14062 · doi:10.1090/S0894-0347-06-00545-5
[11] C. Cadman and R. Cavalieri, Gerby localization, \(Z_{3}\) -Hodge integrals and the GW theory of \([{\mathbb C}^{3}/Z_{3}],\) Amer. J. Math. 131 (2009), 1009-1046. · Zbl 1188.14034 · doi:10.1353/ajm.0.0063
[12] R. Cavalieri, Hodge-type integrals on moduli spaces of admissible covers, The interaction of finite type and Gromov-Witten invariants (BIRS 2003), Geom. Topol. Monogr., 8, pp. 167-194, Geom. Topol. Publ., Coventry, 2006. · Zbl 1258.14012
[13] —, Generating functions for Hurwitz-Hodge integrals, Adv. Math. 218 (2008), 1419-1429. · Zbl 1186.14058 · doi:10.1016/j.aim.2008.03.012
[14] T. Coates and Y. Ruan, Quantum cohomology and crepant resolutions: A conjecture, preprint, 2007. · Zbl 1275.53083
[15] D.-E. Diaconescu and B. Florea, Localization and gluing of topological amplitudes, Comm. Math. Phys. 257 (2005), 119-149. · Zbl 1097.14044 · doi:10.1007/s00220-005-1323-8
[16] C. Faber and R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J. 48 (2000), 215-252. · Zbl 1090.14005 · doi:10.1307/mmj/1030132716
[17] W. D. Gillam, Hyperelliptic Gromov-Witten theory, Ph.D. thesis, Columbia Univ., ProQuest LLC, Ann Arbor, MI, 2008.
[18] S. Katz and M. Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disk, Adv. Theor. Math. Phys. 5 (2001), 1-49. · Zbl 1026.32028
[19] J. Li, C.-C. M. Liu, K. Liu, and J. Zhou, A mathematical theory of the topological vertex, Geom. Topol. 13 (2009), 527-621. · Zbl 1184.14084 · doi:10.2140/gt.2009.13.527
[20] D. Ross, Localization and gluing of orbifold amplitudes, The Gromov-Witten orbifold vertex, Trans. Amer. Math. Soc. (to appear). · Zbl 1469.53132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.