×

Variational approach to Arnold diffusion. (English) Zbl 1427.37049

Summary: Arnold diffusion was conjectured by V. I. Arnol’d [Sov. Math., Dokl. 5, 581–585 (1964; Zbl 0135.42602); translation from Dokl. Akad. Nauk SSSR 156, 9–12 (1964)] as a typical phenomena of topological instability in classical mechanics. In this paper, we give a panorama of the researches on Arnold diffusion using the variational approaches.

MSC:

37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37J51 Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games

Citations:

Zbl 0135.42602
Full Text: DOI

References:

[1] Arnol’d V I. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math Surveys, 1963, 18: 85-192 · Zbl 0135.42701 · doi:10.1070/RM1963v018n06ABEH001143
[2] Arnol’d V I. Instability of dynamical systems with several degrees of freedom (Instability of motions of dynamic system with five-dimensional phase space). Soviet Math, 1964, 5: 581-585 · Zbl 0135.42602
[3] Arnol’d V I. Mathematical Methods of Classical Mechanics. New York: Springer, 1989 · Zbl 0692.70003 · doi:10.1007/978-1-4757-2063-1
[4] Arnol’d, V. I., Mathematical problems in classical physics, 1-20 (1994), New York · Zbl 0806.53078
[5] Arnol’d V I. The stability problem and ergodic properties for classical dynamical systems. In: Proceedings of International Congress of Mathematicians. Berlin-Heidelberg: Springer, 2014, 107-113
[6] Bangert, V., Mather sets for twist maps and geodesics on tori, 1-56 (1988), Wiesbaden · Zbl 0664.53021
[7] Bernard P. Symplectic aspects of Mather theory. Duke Math J, 2007, 136: 401-420 · Zbl 1114.37036
[8] Bernard P. The dynamics of pseudographs in convex Hamiltonian systems. J Amer Math Soc, 2008, 21: 615-669 · Zbl 1213.37089 · doi:10.1090/S0894-0347-08-00591-2
[9] Bernard P, Contreras G. A generic property of families of Lagrangian systems. Ann of Math (2), 2008, 167: 1099-1108 · Zbl 1175.37067 · doi:10.4007/annals.2008.167.1099
[10] Bernard P, Kaloshin V, Zhang K. Arnold diffusion in arbitrary degrees of freedom and crumpled 3-dimensional normally hyperbolic invariant cylinders. Acta Math, 2017, 217: 1-79 · Zbl 1368.37068 · doi:10.1007/s11511-016-0141-5
[11] Cheng C-Q. Arnold diffusion in nearly integrable Hamiltonian systems. ArXiv:1207.4016, 2012. Permanent preprint. Decomposed and expanded into [12, 13, 20]
[12] Cheng C-Q. Uniform hyperbolicity of invariant cylinder. J Differential Geom, 2017, 106: 1-43 · Zbl 1405.53117 · doi:10.4310/jdg/1493172093
[13] Cheng C-Q. Dynamics around the double resonance. Cambridge J Math, 2017, 5: 153-228 · Zbl 1378.37103 · doi:10.4310/CJM.2017.v5.n2.a1
[14] Cheng C-Q. The genericity of Arnold diffusion in nearly integerable Hamiltonian systems. Asian J Math, 2019, in press
[15] Cheng C-Q, Xue J. Arnold diffusion in nearly integrable Hamiltonian systems of arbitrary degrees of freedom. ArX-iv:1503.04153v2, 2015
[16] Cheng C-Q, Xue J. Order property and Modulus of Continuity of Weak KAM Solutions. Calc Var Partial Differential Equations, 2018, 57: 65 · Zbl 1387.37060 · doi:10.1007/s00526-018-1324-z
[17] Cheng C-Q, Yan J. Existence of diffusion orbits in a priori unstable Hamiltonian systems. J Differential Geom, 2004, 67: 457-517 · Zbl 1098.37055 · doi:10.4310/jdg/1102091356
[18] Cheng C-Q, Yan J. Arnold diffusion in Hamiltonian Systems: a priori Unstable Case. J Differential Geom, 2009, 82: 229-277 · Zbl 1179.37081 · doi:10.4310/jdg/1246888485
[19] Cheng C-Q, Zhou M. Non-degeneracy of extremal points in multi-dimensional space. Sci China Math, 2015, 58: 2255-2260 · Zbl 1344.37022 · doi:10.1007/s11425-015-5057-6
[20] Cheng C-Q, Zhou M. Hyperbolicity of minimal periodic orbits. Math Res Lett, 2016, 23: 685-705 · Zbl 1381.37071 · doi:10.4310/MRL.2016.v23.n3.a6
[21] Delshams A, de la Llave R, Seara T M. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Heuristics and rigorous verification on a model. Mem Amer Math Soc, 2006, 179: 844 · Zbl 1090.37044
[22] Delshams A, de la Llave R, Seara T M. Geometric properties of the scattering map of a normally hyperbolic invariant manifold. Adv Math, 2008, 217: 1096-1153 · Zbl 1131.37032 · doi:10.1016/j.aim.2007.08.014
[23] Delshams A, de la Llave R, Seara T M. Instability of high dimensional hamiltonian systems: Multiple resonances do not impede diffusion. Adv Math, 2016, 294: 689-755 · Zbl 1355.37074 · doi:10.1016/j.aim.2015.11.010
[24] Delshams A, Huguet G. Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems. Nonlinearity, 2009, 22: 1997-2077 · Zbl 1171.37328 · doi:10.1088/0951-7715/22/8/013
[25] Fathi A. Weak KAM Theorem in Lagrangian Dynamics. Cambridge Studies in Adavnced Mathematics. Cambridge: Cambridge University Press, 2009
[26] Fenichel N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J, 1971, 21: 193-226 · Zbl 0246.58015 · doi:10.1512/iumj.1972.21.21017
[27] Gelfreich V, Turaev D. Arnold Diffusion in a priory chaotic Hamiltonian systems. ArXiv: 1406.2945, 2014
[28] Gidea M, Marco J-P. Diffusion along chains of normally hyperbolic cylinders. ArXiv: 1708.08314, 2017
[29] Hirsch M, Pugh C, Shub M. Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. New York: Springer-Verlag, 1977 · Zbl 0355.58009 · doi:10.1007/BFb0092042
[30] Kaloshin V, Zhang K. A strong form of Arnold diffusion for two and a half degrees of freedom. ArXiv:1212.1150v3, 2018
[31] Kaloshin V, Zhang K. Dynamics of the dominant Hamiltonian, with applications to Arnold diffusion. Bull Soc Math France, 2019, in press
[32] Li X. On c-equivalence. Sci China Ser A, 2009, 52: 2389-2396 · Zbl 1188.37055 · doi:10.1007/s11425-009-0193-5
[33] Li X, Cheng C-Q. Connecting orbits of autonomous Lagrangian systems. Nonlinearity, 2009, 23: 119-141 · Zbl 1183.37104 · doi:10.1088/0951-7715/23/1/007
[34] Mañé R. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 1996, 9: 273-310 · Zbl 0886.58037 · doi:10.1088/0951-7715/9/2/002
[35] Marco J-P. Chains of compact cylinders for cusp-generic nearly integrable convex systems on \[\mathbb{A}^3\] A3. ArXiv:1602.02399, 2016
[36] Mather J. Action minimizing invariant measures for positive definite Lagrangian systems. Math Z, 1991, 207: 169-207 · Zbl 0696.58027 · doi:10.1007/BF02571383
[37] Mather J. Variational construction of connecting orbits. Ann Inst Fourier (Grenoble), 1993, 43: 1349-1386 · Zbl 0803.58019 · doi:10.5802/aif.1377
[38] Mather J. Arnold diffusion, I: Announcement of results. J Math Sci, 2004, 124: 5275-5289 · Zbl 1069.37044 · doi:10.1023/B:JOTH.0000047353.78307.09
[39] Pöschel J. A lecture on the classical KAM theorem. Proc Sympos Pure Math, 2001, 69: 707-732 · Zbl 0999.37053 · doi:10.1090/pspum/069/1858551
[40] Treschev D V. Evolution of slow variables in a priori unstable Hamiltonian systems. Nonlinearity, 2004, 17: 1803-1841 · Zbl 1075.37019 · doi:10.1088/0951-7715/17/5/014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.