×

Order property and modulus of continuity of weak KAM solutions. (English) Zbl 1387.37060

Summary: For the Hamilton-Jacobi equation \(H(x,\partial _xu+c)=\alpha (c)\) with \(x\in \mathbb {T}^2\), it is shown in this paper that, for all \(c\in \alpha ^{-1}(E)\) with \(E>\min \alpha \), the elementary weak KAM solutions can be parameterized so that they are \(\frac{1}{3}\)-Hölder continuous in \(C^0\)-topology.

MSC:

37J50 Action-minimizing orbits and measures (MSC2010)
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
70H20 Hamilton-Jacobi equations in mechanics
Full Text: DOI

References:

[1] Bangert, V.: Mather sets for twist maps and geodesics on tori. Dynamics Reported, pp. 1-56. Vieweg+ Teubner, Weisbaden (1988) · Zbl 0664.53021
[2] Bernard, P.: Existence of \[C^{1,1}\] C1,1 critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds. Ann. Sci. École Norm. Sup. 40, 445-452 (2007) · Zbl 1133.35027 · doi:10.1016/j.ansens.2007.01.004
[3] Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations and optimal control. Progress in Nonlinear Differential Equations and Their Appications, vol. 58. Birkhäuser, Basel (2004) · Zbl 1095.49003
[4] Cheng, C.-Q., Yan, J.: Existence of diffusion orbits in a priori unstable Hamiltonian systems. J. Differ. Geom. 67, 457-517 (2004) · Zbl 1098.37055 · doi:10.4310/jdg/1102091356
[5] Cheng, C.-Q., Yan, J.: Arnold diffusion in Hamiltonian systems: a priori unstable case. J. Differ. Geom. 82, 229-277 (2009) · Zbl 1179.37081 · doi:10.4310/jdg/1246888485
[6] Crandall, M., Evans, L.C., Loins, P.-L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282, 487-502 (1984) · Zbl 0543.35011 · doi:10.1090/S0002-9947-1984-0732102-X
[7] Fathi, A.: Théorème KAM faible et théorie de Mather sue les systèmes. C. R. Acad. Sci. Paris Sér. I Math. 324, 1043-1046 (1997) · Zbl 0885.58022 · doi:10.1016/S0764-4442(97)87883-4
[8] Fathi, A.: Weak KAM theorem in Lagrangian dynamics, preliminary version 10, (2008)
[9] Fathi, A., Siconolfi, A.: Existence of \[C^1\] C1 critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155, 363-388 (2004) · Zbl 1061.58008 · doi:10.1007/s00222-003-0323-6
[10] Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977) · Zbl 0355.58009
[11] Ishii, H.: A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations. Proc. Am. Math. Soc. 100, 247-251 (1987) · Zbl 0644.35017 · doi:10.1090/S0002-9939-1987-0884461-3
[12] Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S: Homogenization of Hamilton-Jacobi equations. (1986) (unpublished preprint) · Zbl 1253.37060
[13] Mather, J.: Modulus of continuity for Peierls’s barrier. Periodic solutions of Hamiltonian systems and related topics (Il Ciocco, 1986), 177-202, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 209, Reidel, Dordrecht, (1987) · Zbl 1032.37045
[14] Mather, J.: Destruction of invariant circles. Ergod. Theory Dyn. Syst. 8, 199-214 (1988) · Zbl 0688.58024 · doi:10.1017/S0143385700009421
[15] Mather, J.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2), 169-207 (1991) · Zbl 0696.58027 · doi:10.1007/BF02571383
[16] Mather, J.: Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble) 43, 1349-1386 (1993) · Zbl 0803.58019 · doi:10.5802/aif.1377
[17] Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9, 273-310 (1996) · Zbl 0886.58037 · doi:10.1088/0951-7715/9/2/002
[18] Massart, D.: On Aubry sets and Mather’s action functional. Israel J. Math. 134, 157-171 (2003) · Zbl 1032.37045 · doi:10.1007/BF02787406
[19] Rockafellar, T.: Convex analysis. Princeton University Press, Princeton (1970) · Zbl 0193.18401 · doi:10.1515/9781400873173
[20] Zhou, Min: Hölder regularity of weak KAM solutions in a priori unstable systems. Math. Res. Lett. 18(1), 75-92 (2011) · Zbl 1253.37060 · doi:10.4310/MRL.2011.v18.n1.a6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.