×

Instability of high dimensional Hamiltonian systems: multiple resonances do not impede diffusion. (English) Zbl 1355.37074


MSC:

37J25 Stability problems for finite-dimensional Hamiltonian and Lagrangian systems
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion

References:

[1] Abraham, R.; Marsden, J. E., Foundations of Mechanics, Advanced Book Program (1978), Benjamin/Cummings Publishing Co. Inc.: Benjamin/Cummings Publishing Co. Inc. Reading, MA, (with the assistance of Tudor Raţiu and Richard Cushman) · Zbl 0393.70001
[2] Arnol’d, V. I., Proof of a theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations, Russian Math. Surveys, 18, 5, 9-36 (1963) · Zbl 0129.16606
[3] Arnold, V., Instability of dynamical systems with several degrees of freedom, Sov. Math., Dokl., 5, 581-585 (1964) · Zbl 0135.42602
[4] Arnold, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., vol. 60 (1978), Springer-Verlag: Springer-Verlag New York, (translated from the Russian by K. Vogtmann and A. Weinstein) · Zbl 0386.70001
[5] Arnold, V.; Kozlov, V.; Neishtadt, A., Dynamical Systems III, Encyclopaedia Math. Sci., vol. 3 (1988), Springer: Springer Berlin
[6] Bernard, P., Arnold’s diffusion: from the a priori unstable to the a priori stable case, (Proceedings of the International Congress of Mathematicians, vol. III (2010), Hindustan Book Agency: Hindustan Book Agency New Delhi), 1680-1700 · Zbl 1251.37061
[7] Bernard, P.; Kaloshin, V.; Zhang, K., Arnold diffusion in arbitrary degrees of freedom and crumpled 3-dimensional normally hyperbolic invariant cylinders (2011)
[8] Berti, M.; Bolle, P., A functional analysis approach to Arnold diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19, 4, 395-450 (2002) · Zbl 1087.37048
[9] Berti, M.; Biasco, L.; Bolle, P., Drift in phase space: a new variational mechanism with optimal diffusion time, J. Math. Pures Appl. (9), 82, 6, 613-664 (2003) · Zbl 1025.37037
[10] Bessi, U., Arnold’s diffusion with two resonances, J. Differential Equations, 137, 2, 211-239 (1997) · Zbl 0885.58020
[11] Bessi, U.; Chierchia, L.; Valdinoci, E., Upper bounds on Arnold diffusion times via Mather theory, J. Math. Pures Appl. (9), 80, 1, 105-129 (2001) · Zbl 0986.37052
[12] Bogoliubov, N. N.; Mitropolsky, Y. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, Int. Monogr. Adv. Math. Phys. (1961), Hindustan Publishing Corp./Gordon and Breach Science Publishers: Hindustan Publishing Corp./Gordon and Breach Science Publishers Delhi/New York, (translated from the second revised Russian edition) · Zbl 0151.12201
[13] Bolotin, S.; Treschev, D., Unbounded growth of energy in nonautonomous Hamiltonian systems, Nonlinearity, 12, 2, 365-388 (1999) · Zbl 0989.37050
[14] Capiński, M. J.; Zgliczyński, P., Transition tori in the planar restricted elliptic three-body problem, Nonlinearity, 24, 5, 1395-1432 (2011) · Zbl 1218.37074
[15] Cary, J. R., Lie transform perturbation theory for Hamiltonian systems, Phys. Rep., 79, 2, 129-159 (1981)
[16] Cheng, C.-Q., Variational methods for the problem of Arnold diffusion, (Hamiltonian Dynamical Systems and Applications. Hamiltonian Dynamical Systems and Applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys. (2008), Springer: Springer Dordrecht), 337-365 · Zbl 1144.37024
[17] Cheng, C.-Q., Variational construction of diffusion orbits for positive definite Lagrangians, (Proceedings of the International Congress of Mathematicians, vol. III (2010), Hindustan Book Agency: Hindustan Book Agency New Delhi), 1714-1728 · Zbl 1241.37008
[18] Cheng, C.-Q., Arnold diffusion in nearly integrable Hamiltonian systems (2012)
[19] Cheng, C.-Q.; Yan, J., Existence of diffusion orbits in a priori unstable Hamiltonian systems, J. Differential Geom., 67, 3, 457-517 (2004) · Zbl 1098.37055
[20] Chierchia, L.; Gallavotti, G., Drift and diffusion in phase space, Ann. Inst. H. Poincaré, Phys. Théor., 60, 1, 1-144 (1994) · Zbl 1010.37039
[21] Chierchia, L.; Gallavotti, G., Erratum: Drift and diffusion in phase space, Ann. Inst. H. Poincaré, Phys. Théor., 68, 135 (1998)
[22] Chirikov, B., A universal instability of many-dimensional oscillator systems, Phys. Rep., 52, 5, 264-379 (1979)
[23] de la Llave, R., A tutorial on KAM theory, (Smooth Ergodic Theory and Its Applications. Smooth Ergodic Theory and Its Applications, Seattle, WA, 1999 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 175-292 · Zbl 1055.37064
[25] de la Llave, R.; Marco, J. M.; Moriyón, R., Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. (2), 123, 3, 537-611 (1986) · Zbl 0603.58016
[26] Delshams, A.; Huguet, G., Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems, Nonlinearity, 22, 8, 1997-2077 (2009) · Zbl 1171.37328
[27] Delshams, A.; de la Llave, R.; Seara, T. M., A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of \(T^2\), Comm. Math. Phys., 209, 2, 353-392 (2000) · Zbl 0952.70015
[28] Delshams, A.; de la Llave, R.; Seara, T. M., A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: announcement of results, Electron. Res. Announc. Am. Math. Soc., 9, 125-134 (2003), (electronic) · Zbl 1068.37043
[29] Delshams, A.; de la Llave, R.; Seara, T. M., A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model, Mem. Amer. Math. Soc., 179, 844 (2006), viii+141 · Zbl 1090.37044
[30] Delshams, A.; de la Llave, R.; Seara, T. M., Orbits of unbounded energy in quasi-periodic perturbations of geodesic flows, Adv. Math., 202, 1, 64-188 (2006) · Zbl 1091.37018
[31] Delshams, A.; de la Llave, R.; Seara, T. M., Geometric properties of the scattering map of a normally hyperbolic invariant manifold, Adv. Math., 217, 3, 1096-1153 (2008) · Zbl 1131.37032
[32] Delshams, A.; Gidea, M.; de la Llave, R.; Seara, T. M., Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation, (Hamiltonian Dynamical Systems and Applications. Hamiltonian Dynamical Systems and Applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys. (2008), Springer: Springer Dordrecht), 285-336 · Zbl 1144.37022
[33] Delshams, A.; Kaloshin, V.; de la Rosa, A.; Seara, T. M., Global instability in the elliptic restricted three body problem (2015)
[34] Du Toit, P.; Mezić, I.; Marsden, J., Coupled oscillator models with no scale separation, Phys. D, 238, 5, 490-501 (2009) · Zbl 1157.37343
[35] Féjoz, J.; Guardia, M.; Kaloshin, V.; Roldán, P., Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem, J. Eur. Math. Soc. (JEMS) (2015), in press
[36] Fenichel, N., Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21, 193-226 (1971/1972) · Zbl 0246.58015
[37] Fenichel, N., Asymptotic stability with rate conditions, Indiana Univ. Math. J., 23, 1109-1137 (1973/74) · Zbl 0284.58008
[38] Fontich, E.; Martín, P., Differentiable invariant manifolds for partially hyperbolic tori and a lambda lemma, Nonlinearity, 13, 5, 1561-1593 (2000) · Zbl 0985.37065
[39] Fontich, E.; Martín, P., Hamiltonian systems with orbits covering densely submanifolds of small codimension, Nonlinear Anal., 52, 1, 315-327 (2003) · Zbl 1018.37039
[40] Gelfreich, V.; Turaev, D., Unbounded energy growth in Hamiltonian systems with a slowly varying parameter, Comm. Math. Phys., 283, 3, 769-794 (2008) · Zbl 1152.37023
[41] Gidea, M.; de la Llave, R., Topological methods in the instability problem of Hamiltonian systems, Discrete Contin. Dyn. Syst., 14, 2, 295-328 (2006) · Zbl 1098.37056
[42] Gidea, M.; de la Llave, R., Perturbation of recurrent flows by recurrent dynamics, J. Eur. Math. Soc. (JEMS) (2014), in press
[44] Haller, G., Universal homoclinic bifurcations and chaos near double resonances, J. Stat. Phys., 86, 5-6, 1011-1051 (1997) · Zbl 0939.37033
[45] Haller, G., Chaos Near Resonance (1999), Springer-Verlag: Springer-Verlag New York · Zbl 1024.37002
[46] Herman, M.-R., Sur les courbes invariantes par les difféomorphismes de l’anneau. Vol. 1, Astérisque, vol. 103 (1983), Société Mathématique de France: Société Mathématique de France Paris · Zbl 0532.58011
[47] Hirsch, M.; Pugh, C.; Shub, M., Invariant Manifolds, Lecture Notes in Math., vol. 583 (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0355.58009
[48] Holmes, P.; Marsden, J., Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems, J. Math. Phys., 23, 4, 669-675 (1982) · Zbl 0497.70025
[49] Kaloshin, V., Geometric proofs of Mather’s connecting and accelerating theorems, (Topics in Dynamics and Ergodic Theory. Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser., vol. 310 (2003), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 81-106 · Zbl 1043.37045
[50] Kaloshin, V.; Zhang, K., A strong form of Arnold diffusion for two and a half degrees of freedom (2012)
[51] Kolmogorov, A. N., On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR. (Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Volta Memorial Conf., Como, 1977. Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Volta Memorial Conf., Como, 1977, Lecture Notes in Phys., vol. 93 (1979), Springer: Springer Berlin), 98, 51-56 (1954), English transl. · Zbl 0441.70018
[52] Lieberman, M. A.; Tennyson, J. L., Chaotic motion along resonance layers in near-integrable Hamiltonian systems with three or more degrees of freedom, (Horton, J. C.W.; Reichl, L. E., Long-Time Prediction in Dynamics. Long-Time Prediction in Dynamics, Lakeway, Tex., 1981 (1983), Wiley: Wiley New York), 179-211
[53] Lochak, P.; Meunier, C., Multiphase Averaging for Classical Systems, Appl. Math. Sci., vol. 72 (1988), Springer: Springer New York · Zbl 0668.34044
[55] Marco, J.-P.; Sabbagh, L., Examples of nearly integrable systems on \(A^3\) with asymptotically dense projected orbits (2014)
[56] Mather, J. N., Arnol’d diffusion. I. Announcement of results, J. Math. Sci. (N. Y.), 124, 5, 5275-5289 (2004) · Zbl 1069.37044
[57] Meyer, K. R., Lie transform tutorial. II, (Meyer, K. R.; Schmidt, D. S., Computer Aided Proofs in Analysis. Computer Aided Proofs in Analysis, Cincinnati, OH, 1989. Computer Aided Proofs in Analysis. Computer Aided Proofs in Analysis, Cincinnati, OH, 1989, IMA Vol. Math. Appl., vol. 28 (1991), Springer: Springer New York), 190-210 · Zbl 0747.34008
[58] Moeckel, R., Transition tori in the five-body problem, J. Differential Equations, 129, 2, 290-314 (1996) · Zbl 0862.70007
[59] Moser, J., A rapidly convergent iteration method and non-linear partial differential equations. I, Ann. Sc. Norm. Super. Pisa, 3, 20, 265-315 (1966) · Zbl 0144.18202
[60] Neĭshtadt, A. I., Estimates in the Kolmogorov theorem on conservation of conditionally periodic motions, Prikl. Mat. Mekh., 45, 6, 1016-1025 (1981) · Zbl 0515.70019
[61] Pesin, Y. B., Lectures on Partial Hyperbolicity and Stable Ergodicity, Zur. Lect. Adv. Math. (2004), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1098.37024
[62] Piftankin, G. N., Diffusion speed in the Mather problem, Nonlinearity, 19, 11, 2617-2644 (2006) · Zbl 1190.37067
[63] Piftankin, G. N.; Treshchëv, D. V., Separatrix maps in Hamiltonian systems, Russian Math. Surveys, 62, 2, 219-322 (2007) · Zbl 1151.37050
[64] Pöschel, J., Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 35, 5, 653-696 (1982) · Zbl 0542.58015
[65] Pöschel, J., A lecture on the classical KAM theorem, (Smooth Ergodic Theory and Its Applications. Smooth Ergodic Theory and Its Applications, Seattle, WA, 1999. Smooth Ergodic Theory and Its Applications. Smooth Ergodic Theory and Its Applications, Seattle, WA, 1999, Proc. Sympos. Pure Math., vol. 69 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 707-732 · Zbl 0999.37053
[66] Salamon, D. A., The Kolmogorov-Arnold-Moser theorem, Math. Phys. Electron. J., 10, Article 3 pp. (2004), (electronic) · Zbl 1136.37348
[67] Tennyson, J., Resonance transport in near-integrable systems with many degrees of freedom, Phys. D, 5, 1, 123-135 (1982) · Zbl 1194.37097
[68] Thirring, W., Classical mathematical physics, (Dynamical Systems and Field Theories (1997), Springer-Verlag: Springer-Verlag New York), (translated from the German by Evans M. Harrell, II)
[69] Treschev, D., Multidimensional symplectic separatrix maps, J. Nonlinear Sci., 12, 1, 27-58 (2002) · Zbl 1022.37041
[70] Treschev, D., Evolution of slow variables in a priori unstable Hamiltonian systems, Nonlinearity, 17, 5, 1803-1841 (2004) · Zbl 1075.37019
[71] Treschev, D., Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems, Nonlinearity, 25, 9, 2717-2757 (2012) · Zbl 1266.37026
[72] Treschev, D.; Zubelevich, O., Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monogr. Math. (2010), Springer-Verlag: Springer-Verlag Berlin · Zbl 1181.37001
[73] Xue, J., Arnold diffusion in a restricted planar four-body problem, Nonlinearity, 27, 12, 2887-2908 (2014) · Zbl 1309.37054
[74] Zehnder, E., Generalized implicit function theorems with applications to some small divisor problems/I, Comm. Pure Appl. Math., 28, 91-140 (1975) · Zbl 0309.58006
[75] Zehnder, E., Generalized implicit function theorems with applications to some small divisor problems/II, Comm. Pure Appl. Math., 29, 49-111 (1976) · Zbl 0334.58009
[76] Zehnder, E., Moser’s implicit function theorem in the framework of analytic smoothing, Math. Ann., 219, 2, 105-121 (1976) · Zbl 0297.58003
[77] Zhang, K., Speed of Arnold diffusion for analytic Hamiltonian systems, Invent. Math., 186, 2, 255-290 (2011) · Zbl 1251.37063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.