×

A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order. (English) Zbl 1426.34021

Summary: In this article, we study asymptotic and smooth properties of solutions to nonlinear non-instantaneous impulsive differential equations involving parameters of integer order and fractional order. We introduce the concept of continuous dependence and differentiability of solutions and establish sufficient conditions to guarantee the solution depends continuously and is differentiable on the initial condition, impulsive parameters and junction parameters. Finally, two models of non-instantaneous impulsive logistic equations are given to illustrate our results.

MSC:

34A08 Fractional ordinary differential equations
34A37 Ordinary differential equations with impulses
34G20 Nonlinear differential equations in abstract spaces
Full Text: DOI

References:

[1] Stamova, I.; Stamov, G., Applied Impulsive Mathematical Models (2016), Springer International Publishing · Zbl 1355.34004
[2] Wang, J., Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., 73, 157-162 (2017) · Zbl 1379.34056
[3] Andronov, A. A.; Vitt, A. A.; Haykin, S. E., Oscillation Theory (1981), Nauka: Nauka Moscow · Zbl 0527.34001
[4] Joelianto, E.; Sutarto, H. Y., Controlled switching dynamical systems using linear impulsive differential equations, (Budiyono, A.; Riyanto, B.; Joelianto, E., Intelligent Unmanned Systems: Theory and Applications, 192 (2009), Springer: Springer Berlin), 227-244
[5] Myshkis, A. D.; Samoilenko, A. M., Sytems with impulsive at fixed moments of time, Mat. Sb., 74, 202-208 (1967)
[6] Hernández, E.; O’Regan, D., On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141, 1641-1649 (2013) · Zbl 1266.34101
[7] Hilfer, R., Applications of Fractional Calculus in Physics (1999), World Scientific: World Scientific Singapore · Zbl 0998.26002
[8] Baleanu, D.; Machado, J. A.T.; Luo, A. C.J., Fractional Dynamics and Control (2012), Springer: Springer New York
[9] Diethelm, K., The analysis of fractional differential equations, Lecture Notes in Mathematics (2010), Springer: Springer New York · Zbl 1215.34001
[10] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Differential Equations (1993), John Wiley: John Wiley New York · Zbl 0789.26002
[11] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[12] Wang, J., Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces, Appl. Math. Comput., 256, 315-323 (2015) · Zbl 1338.93084
[13] Wang, J.; Fečkan, M.; Zhou, Y., Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. des Sci. Math., 141, 727-746 (2017) · Zbl 1387.34012
[14] Wang, J.; Zhou, Y.; Lin, Z., On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242, 649-657 (2014) · Zbl 1334.34022
[15] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A Math. Gen., 37, R161-R208 (2004) · Zbl 1075.82018
[16] Pagnini, G., Short note on the emergence of fractional kinetics, Phys. A, 409, 29-34 (2014) · Zbl 1395.82216
[17] Wang, J.; Li, X., A uniformed method to Ulam-Hyers stability for some linear fractional equations, Mediterr. J. Math., 13, 625-635 (2016) · Zbl 1337.26020
[18] Bainov, D. D.; Simeonov, P. S., Theory of impulsive differential equations, Series on Advances in Mathematics for Applied Sciences, 28 (1995), World Scientific: World Scientific Singapore · Zbl 0828.34002
[19] Samoilenko, A. M.; Perestyuk, N. A.; Chapovsky, Y., Impulsive Differential Equations (1995), World Scientific · Zbl 0837.34003
[20] Benchohra, M.; Henderson, J.; Ntouyas, S. K., Impulsive Differential Equations and Inclusions (2006), Hindawi Publishing Corporation · Zbl 1130.34003
[21] Dishliev, A.; Dishlieva, K.; Nenov, S., Specific Asymptotic Properties of the Solutions of Impulsive Differential Equations: Methods and Applications (2012), Academic Publication
[22] Yang, X.; Li, C.; Song, Q.; Huang, T.; Chen, X., Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks, Neurocomputing, 207, 276-286 (2016)
[23] Li, X.; Song, S., Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays, IEEE Trans. Neural Netw. Learn. Syst., 24, 868-877 (2013)
[24] Li, X.; Shen, J., LMI approach for stationary oscillation of interval neural networks with discrete and distributed time-varying delays under impulsive perturbations, IEEE Trans. Neural Netw., 21, 1555-1563 (2010)
[25] Li, X.; Bohner, M.; Wang, C., Impulsive differential equations: periodic solutions and applications, Automatica, 52, 173-178 (2015) · Zbl 1309.93074
[26] Kalamani, P.; Baleanu, D.; Selvarasu, S.; Arjunan, M. M., On existence results for impulsive fractional neutral stochastic integro-differential equations with nonlocal and state-dependent delay conditions, Adv. Differ. Equ., 2016, 163 (2016) · Zbl 1422.34221
[27] Wang, G.; Liu, S.; Baleanu, D., A new impulsive multi-orders fractional differential equation involving multipoint fractional integral boundary conditions, Abstr. Appl. Anal., 2014, 1-10 (2014) · Zbl 1474.34056
[28] Wu, G.; Baleanu, D.; Luo, W., Lyapunov functions for Riemann-Liouville-like fractional difference equations, Appl. Math. Comput., 314, 228-236 (2017) · Zbl 1426.39010
[29] Chen, P.; Li, Y.; Yang, H., Perturbation method for nonlocal impulsive evolution equations, Nonlinear Anal. Hybrid Syst., 8, 22-30 (2013) · Zbl 1257.93034
[30] Bai, L.; Nieto, J. J., Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73, 44-48 (2017) · Zbl 1382.34028
[31] Pierri, M.; O’Regan, D.; Rolnik, V., Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219, 6743-6749 (2013) · Zbl 1293.34019
[32] Pierri, M.; Henríquez, H. R.; Prokczyk, A., Global solutions for abstract differential equations with non-instantaneous impulses, Mediterr. J. Math., 34, 1685-1708 (2016) · Zbl 1353.34071
[33] Hernández, E.; Pierri, M.; O’Regan, D., On abstract differential equations with non instantaneous impulses, Topol. Methods Nonlinear Anal., 46, 1067-1085 (2015) · Zbl 1360.34131
[34] Agarwal, R.; O’Regan, D.; Hristova, S., Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 53, 147-168 (2017) · Zbl 1361.34064
[35] Wang, J.; Fečkan, M.; Tian, Y., Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediter. J. Math., 14, 1-21 (2017) · Zbl 1373.34031
[36] Abbas, S.; Benchohra, M., Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses, Appl. Math. Comput., 257, 190-198 (2015) · Zbl 1338.35455
[37] Gautam, G. R.; Dabas, J., Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses, Appl. Math. Comput., 259, 480-489 (2015) · Zbl 1390.34221
[38] Yan, Z.; Lu, F., The optimal control of a new class of impulsive stochastic neutral evolution integro-differential equations with infinite delay, Int. J. Control, 89, 1592-1612 (2016) · Zbl 1353.93120
[39] Muslim, M.; Kumar, A.; Fečkan, M., Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Univ. (2016)
[40] Colao, V.; Muglia, L.; Xu, H. K., An existence result for a new class of impulsive functional differential equations with delay, J. Math. Anal. Appl., 441, 668-683 (2016) · Zbl 1353.34092
[41] Yang, D.; Wang, J., Non-instantaneous impulsive fractional-order implicit differential equations with random effects, Stoch. Anal. Appl., 35, 719-741 (2017) · Zbl 1370.34022
[42] Yang, D.; Wang, J.; O’Regan, D., Asymptotic properties of the solutions of nonlinear non-instantaneous impulsive differential equations, J. Frankl. Inst., 354, 6978-7011 (2017) · Zbl 1373.93159
[43] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam · Zbl 1092.45003
[44] Wang, J.; Fečkan, M., A general class of impulsive evolution equations, Topol. Meth. Nonlinear Anal., 46, 915-934 (2015) · Zbl 1381.34081
[45] Agarwal, R.; O’Regan, D.; Hristova, S., A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19, 290-318 (2016) · Zbl 1343.34006
[46] Wang, J.; Fečkan, M.; Zhou, Y., A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19, 806-831 (2016) · Zbl 1344.35169
[47] Dishlieva, K. G., Differentiability of solutions of impulsive differential equations with respect to the impulsive perturbations, Nonlinear Anal. Real World Appl., 12, 3541-3551 (2011) · Zbl 1231.34018
[48] Bainov, D.; Simeonov, P., Integral Inequalities and Applications (1992), Kluwer Academic Publishers · Zbl 0759.26012
[49] Ye, H.; Gao, J.; Ding, Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 1075-1081 (2007) · Zbl 1120.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.