×

On a new class of impulsive fractional differential equations. (English) Zbl 1334.34022

Summary: We consider fractional ordinary differential equations with not instantaneous impulses. Firstly, we construct a uniform framework to derive a formula of solutions for impulsive fractional Cauchy problem involving generalization of classical Caputo derivative with the lower bound at zero. In other words, we mean a different solution keeping in each impulses the lower bound at zero, which can better characterize the memory property of fractional derivative. Secondly, we introduce a new concept of generalized Ulam-Hyers-Rassias stability. Then, we choose a fixed point theorem to derive a generalized Ulam-Hyers-Rassias stability result for such new class of impulsive fractional differential equations. Finally, an example is given to illustrate our main results.

MSC:

34A08 Fractional ordinary differential equations
34A37 Ordinary differential equations with impulses
Full Text: DOI

References:

[1] Baleanu, D.; Machado, J. A.T.; Luo, A. C.-J., Fractional Dynamics and Control (2012), Springer
[3] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier Science B.V. · Zbl 1092.45003
[4] Lakshmikantham, V.; Leela, S.; Devi, J. V., Theory of Fractional Dynamic Systems (2009), Cambridge Scientific Publishers · Zbl 1188.37002
[5] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[6] Tarasov, V. E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media (2011), Springer, HEP
[7] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus Models and Numerical Methods. Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (2012), World Scientific · Zbl 1248.26011
[8] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109, 973-1033 (2010) · Zbl 1198.26004
[9] Ahmad, B.; Sivasundaram, S., Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal.:HS, 3, 251-258 (2009) · Zbl 1193.34056
[10] Benchohra, M.; Seba, D., Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Diff. Equ. Spec. Ed. I, 2009, 8, 1-14 (2009) · Zbl 1189.26005
[11] Balachandran, K.; Kiruthika, S., Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electron. J. Qual. Theory Diff. Equ., 2010, 4, 1-12 (2010) · Zbl 1201.34091
[12] Wang, G.; Zhang, L.; Song, G., Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions, Nonlinear Anal.:TMA, 74, 974-982 (2011) · Zbl 1223.34091
[13] Fečkan, M.; Zhou, Y.; Wang, J., On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 3050-3060 (2012) · Zbl 1252.35277
[14] Wang, J.; Zhou, Y.; Fečkan, M., On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64, 3008-3020 (2012) · Zbl 1268.34032
[15] Wang, J.; Zhou, Y.; Fečkan, M., Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64, 3389-3405 (2012) · Zbl 1268.34033
[16] Kosmatov, N., Initial value problems of fractional order with fractional impulsive conditions, Results Math., 63, 1289-1310 (2013) · Zbl 1286.34011
[17] Hernández, E.; O’Regan, D., On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141, 1641-1649 (2013) · Zbl 1266.34101
[18] Pierri, M.; O’Regan, D.; Rolnik, V., Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219, 6743-6749 (2013) · Zbl 1293.34019
[19] Ulam, S. M., A Collection of Mathematical Problems (1968), Interscience Publishers: Interscience Publishers New York · Zbl 0086.24101
[20] Hyers, D. H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27, 222-224 (1941) · JFM 67.0424.01
[21] Hyers, D. H.; Isac, G.; Rassias, Th., Stability of Functional Equations in Several Variables (1998), Birkhäuser · Zbl 0894.39012
[22] Rassias, Th. M., On the stability of linear mappings in Banach spaces, Proc. Am. Math. Soc., 72, 297-300 (1978) · Zbl 0398.47040
[23] Jung, S.-M., Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis (2001), Hadronic Press: Hadronic Press Palm Harbor · Zbl 0980.39024
[24] Jung, S.-M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis (2011), Springer: Springer New York · Zbl 1221.39038
[26] Jung, S.-M.; Kim, T. S.; Lee, K. S., A fixed point approach to the stability of quadratic functional equation, Bull. Korean Math. Soc., 43, 531-541 (2006) · Zbl 1113.39031
[27] Jung, S.-M.; Rassias, Th. M., Generalized Hyers-Ulam stability of Riccati differential equation, Math. Inequal. Appl., 11, 777-782 (2008) · Zbl 1200.39010
[28] András, Sz.; Kolumbán, J. J., On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions, Nonlinear Anal.:TMA, 82, 1-11 (2013) · Zbl 1275.34075
[29] Burger, M.; Ozawa, N.; Thom, A., On Ulam stability, Isr. J. Math., 193, 109-129 (2013) · Zbl 1271.22003
[30] Cimpean, D. S.; Popa, D., Hyers-Ulam stability of Euler’s equation, Appl. Math. Lett., 24, 1539-1543 (2011) · Zbl 1225.35051
[31] Hegyi, B.; Jung, S.-M., On the stability of Laplace’s equation, Appl. Math. Lett., 26, 549-552 (2013) · Zbl 1266.35014
[32] Rezaei, H.; Jung, S. M.; Rassias, Th. M., Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl., 403, 244-251 (2013) · Zbl 1286.34077
[33] Lungu, N.; Popa, D., Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl., 385, 86-91 (2012) · Zbl 1236.39030
[34] Popa, D.; Raşa, I., On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal. Appl., 381, 530-537 (2011) · Zbl 1222.34069
[35] Rus, I. A., Ulam stability of ordinary differential equations, Stud. Univ. Babeş Bolyai Math., 54, 125-133 (2009) · Zbl 1224.34165
[36] Rus, I. A., Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26, 103-107 (2010) · Zbl 1224.34164
[37] Xu, T. Z., On the stability of multi-Jensen mappings in \(\beta \)-normed spaces, Appl. Math. Lett., 25, 1866-1870 (2012) · Zbl 1253.39035
[38] Wang, J.; Fečkan, M.; Zhou, Y., Ulam’s type stability of impulsive ordinary differential equations, J. Math. Anal. Appl., 395, 258-264 (2012) · Zbl 1254.34022
[39] Diaz, J. B.; Margolis, B., A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Am. Math. Soc., 74, 305-309 (1968) · Zbl 0157.29904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.