×

Asymptotic shape optimization for Riesz means of the Dirichlet Laplacian over convex domains. (English) Zbl 1425.35126

J. Spectr. Theory 9, No. 3, 857-895 (2019); erratum ibid. 11, No. 4, 1987-1991 (2021).
The paper deals with shape optimization for spectral problems. Specifically, a two-parameter family of spectral shape optimization problems for the Dirichlet Laplacian is studied. The optimization is restricted to certain classes of convex domains. Results on the existence of extremal domains and asymptotic behavior are obtained.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
47A75 Eigenvalue problems for linear operators
49Q10 Optimization of shapes other than minimal surfaces
35S05 Pseudodifferential operators as generalizations of partial differential operators

References:

[1] M. Aizenman and E. H. Lieb, On semiclassical bounds for eigenvalues of Schrödinger operators. Phys. Lett. A 66 (1978), no. 6, 427-429.MR 0598768 Zbl
[2] P. R. S. Antunes and P. Freitas, Optimal spectral rectangles and lattice ellipses. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2013), no. 2150, 20120492, 15 pp. MR 3001382 Zbl 1371.49040 · Zbl 1371.49040
[3] S. Ariturk and R. S. Laugesen, Optimal stretching for lattice points under convex curves. Port. Math. 74 (2017), no. 2, 91-114.MR 3734407 Zbl 1386.35289 · Zbl 1386.35289
[4] F. A. Berezin, Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR Ser. Mat. 36(1972), 1134-1167. In Russian. English translation, Math. USSRIzv. 6(1972), 1117-1151.MR 0350504 Zbl 0259.47004 · Zbl 0259.47004
[5] M. van den Berg, On the minimization of Dirichlet eigenvalues. Bull. Lond. Math. Soc. 47(2015), no. 1, 143-155.MR 3312973 Zbl 1317.49052 · Zbl 1317.49052
[6] M. van den Berg, D. Bucur, and K. Gittins, Maximising Neumann eigenvalues on rectangles. Bull. Lond. Math. Soc. 48 (2016), no. 5, 877-894.MR 3556370 Zbl 1358.35078 · Zbl 1358.35078
[7] M. van den Berg and K. Gittins, Minimizing Dirichlet eigenvalues on cuboids of unit measure. Mathematika 63 (2017), no. 2, 469-482.MR 3706591 Zbl 1378.35091 · Zbl 1378.35091
[8] D. Bucur, Regularity of optimal convex shapes. J. Convex Anal. 10 (2003), no. 2, 501-516.MR 2044433 Zbl 1057.49029 · Zbl 1057.49029
[9] D. Bucur, Minimization of the k-th eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal. 206(2012), no. 3, 1073-1083.MR 2989451 Zbl 1254.35165 · Zbl 1254.35165
[10] D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Progress in Nonlinear Differential Equations and their Applications, 65. Birkhäuser Boston, Boston, MA, 2005.MR 2150214 Zbl 1117.49001 · Zbl 1117.49001
[11] D. Bucur and P. Freitas, Asymptotic behaviour of optimal spectral planar domains with fixed perimeter. J. Math. Phys. 54 (2013), no. 5, 053504, 6 pp.MR 3098942 Zbl 1290.35164 · Zbl 1290.35164
[12] D. Bucur, D. Mazzoleni, A. Pratelli, and B. Velichkov, Lipschitz regularity of the eigenfunctions on optimal domains. Arch. Ration. Mech. Anal. 216 (2015), no. 1, 117-151.MR 3305655 Zbl 1319.49067 · Zbl 1319.49067
[13] G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122 (1993), no. 2, 183-195.MR 1217590 Zbl 0811.49028 · Zbl 0811.49028
[14] L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, R.I., 1995.MR 1351007 Zbl 0834.35002 · Zbl 0834.35002
[15] G. Faber, Beweis, daß unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitz. Ber. Bayer. Akad. Wiss. 1923, 169-172.JFM 49.0342.03 · JFM 49.0342.03
[16] R. L. Frank and L. Geisinger, Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain. In P. Exner (ed.), Mathematical results in quantum physics. Proceedings of the QMath11 Conference held in Hradec Králové, September 6-10, 2010. World Scientific, Hackensack, N.J., 2011, 138-147.MR 2885166 Zbl 1253.47031 · Zbl 1253.47031
[17] R. L. Frank and L. Geisinger, Semi-classical analysis of the Laplace operator with Robin boundary conditions. Bull. Math. Sci. 2 (2012), no. 2, 281-319.MR 2994205 Zbl 1253.35090 · Zbl 1253.35090
[18] R. L. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator. J. Reine Angew. Math. 712 (2016), 1-37.MR 3466545 Zbl 1337.35163 · Zbl 1337.35163
[19] R. L. Frank and S. Larson, Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain.arXiv:1901.09771[math.SP] · Zbl 1467.35107
[20] P. Freitas, Asymptotic behaviour of extremal averages of Laplacian eigenvalues. J. Stat. Phys. 167(2017), no. 6, 1511-1518.MR 3652523 Zbl 1372.35198 · Zbl 1372.35198
[21] L. Geisinger, A. Laptev, and T. Weidl, Geometrical versions of improved Berezin-Li- Yau inequalities. J. Spectr. Theory 1 (2011), no. 1, 87-109.MR 2820887 Zbl 1257.35138 · Zbl 1257.35138
[22] K. Gittins and S. Larson, Asymptotic behaviour of cuboids optimising Laplacian eigenvalues. Integral Equations Operator Theory 89 (2017), no. 4, 607-629. MR 3735512 Zbl 1388.35016 · Zbl 1388.35016
[23] P. M. Gruber, Convex and discrete geometry. Grundlehren der Mathematischen Wissenschaften, 336. Springer, Berlin, 2007.MR 2335496 Zbl 1139.52001 · Zbl 1139.52001
[24] J. Guo and W. Wang, Lattice points in stretched model domains of finite type in Rd. J. Number Theory 191(2018), 273-288.MR 3825471 Zbl 06901230 · Zbl 1444.11148
[25] E. M. Harrell II and J. Stubbe, Two-term asymptotically sharp estimates for eigenvalue means of the Laplacian. J. Spectr. Theory 8 (2018), 1529-1550. · Zbl 1402.58020
[26] E. M. Harrell II, L. Provenzano, and J. Stubbe, Complementary asymptotically sharp estimates for eigenvalue means of Laplacians. Preprint, 2018.arXiv:1806.10366 [math.SP] · Zbl 1402.58020
[27] A. Henrot (ed.), Shape optimization and spectral theory. De Gruyter Open, Warsaw, 2017.MR 3681143 Zbl 1369.49004 · Zbl 1369.49004
[28] A. Henrot and M. Pierre, Variation et optimisation de formes. Mathématiques & Applications (Berlin), 48. Springer, Berlin, 2005.MR 2512810 Zbl 1098.49001 · Zbl 1098.49001
[29] J. Hersch, Sur la fréquence fondamentale d’une membrane vibrante: évaluations par défaut et principe de maximum. Z. Angew. Math. Phys. 11 (1960), 387-413. MR 0125319 Zbl 0104.41403 · Zbl 0104.41403
[30] V. Y. Ivrii, On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifolds with boundary and for elliptic operators acting in fiberings. Funktsional. Anal. i Prilozhen. 14(1980), no. 2, 25-34. In Russian. English translation, Functional Anal. Appl. 14 (1980), no. 2, 98-106.MR 0575202 Zbl 0448.58024 · Zbl 0448.58024
[31] H. Kovařík, S. Vugalter, and T. Weidl, Two-dimensional Berezin-Li-Yau inequalities with a correction term. Comm. Math. Phys. 287 (2009), no. 3, 959-981.MR 2486669 Zbl 1197.35182 · Zbl 1197.35182
[32] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94(1925), no. 1, 97-100.MR 1512244 JFM 51.0356.05 · JFM 51.0356.05
[33] E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen. Acta Univ. Dorpat A 9(1926), 1-44.JFM 52.0510.03 · JFM 52.0510.03
[34] A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151 (1997), no. 2, 531-545.MR 1491551 Zbl 0892.35115 · Zbl 0892.35115
[35] S. Larson, A bound for the perimeter of inner parallel bodies. J. Funct. Anal. 271 (2016), no. 3, 610-619.MR 3506959 Zbl 1341.52005 · Zbl 1341.52005
[36] S. Larson, On the remainder term of the Berezin inequality on a convex domain. Proc. Amer. Math. Soc. 145(2017), no. 5, 2167-2181.MR 3611329 Zbl 1377.35206 · Zbl 1377.35206
[37] S. Larson, Maximizing Riesz means of anisotropic harmonic oscillators. To appear in Ark. Mat. Preprint, 2017.arXiv:1712.10247[math.SP]
[38] R. S. Laugesen and S. Liu, Optimal stretching for lattice points and eigenvalues. Ark. Mat. 56(2018), no. 1, 111-145.MR 3800462 Zbl 1390.35206 · Zbl 1390.35206
[39] R. S. Laugesen and S. Liu, Shifted lattices and asymptotically optimal ellipses. J. Anal. 26(2018), no. 1, 71-102.MR 3825687 Zbl 1391.35300 · Zbl 1391.35300
[40] P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys. 88(1983), no. 3, 309-318.MR 0701919 Zbl 0554.35029 · Zbl 0554.35029
[41] E. H. Lieb, The classical limit of quantum spin systems. Comm. Math. Phys. 31 (1973), 327-340.MR 0349181 Zbl 1125.82305 · Zbl 1125.82305
[42] N. F. Marshall, Stretching convex domains to capture many lattice points. Int. Math. Res. Not. IMRN(2018), published online, rny102.
[43] N. F. Marshall and S. Steinerberger, Triangles capturing many lattice points. Mathematika 64(2018), no. 2, 551-582.MR 3798612 Zbl 06908365 · Zbl 1451.51008
[44] D. Mazzoleni, Recent existence results for spectral problems. In A. Pratelli and G. Leugering (eds.), New trends in shape optimization. Papers based on the workshop held at Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, September 2013. International Series of Numerical Mathematics, 166. Birkhäuser/Springer, Cham, 2015, 199-215.MR 3467381 Zbl 1329.49089 · Zbl 1329.49089
[45] D. Mazzoleni, Boundedness of minimizers for spectral problems in RN. Rend. Semin. Mat. Univ. Padova 135(2016), 207-221.MR 3506069 Zbl 1343.49071 · Zbl 1343.49071
[46] D. Mazzoleni and A. Pratelli, Existence of minimizers for spectral problems. J. Math. Pures Appl.(9) 100 (2013), no. 3, 433-453.MR 3095209 Zbl 1296.35100 · Zbl 1296.35100
[47] D. Mazzoleni, S. Terracini, and B. Velichkov, Regularity of the optimal sets for some spectral functionals. Geom. Funct. Anal. 27 (2017), no. 2, 373-426.MR 3626615 Zbl 1368.49047 · Zbl 1368.49047
[48] A. D. Melás, A lower bound for sums of eigenvalues of the Laplacian. Proc. Amer. Math. Soc. 131(2003), no. 2, 631-636.MR 1933356 Zbl 1015.58011 · Zbl 1015.58011
[49] M. H. Protter, A lower bound for the fundamental frequency of a convex region. Proc. Amer. Math. Soc. 81(1981), no. 1, 65-70.MR 0589137 Zbl 0476.35060 · Zbl 0476.35060
[50] J. W. S. Rayleigh, The theory of sound. Macmillan, London, 1877. · JFM 15.0848.02
[51] R. Schneider, Convex bodies: the Brunn-Minkowski theory. Second expanded edition. Encyclopedia of Mathematics and its Applications, 151. Cambridge University Press, Cambridge, 2014.MR 3155183 Zbl 1287.52001
[52] J. P. Solovej and W. L. Spitzer, A new coherent states approach to semiclassics which gives Scott’s correction. Comm. Math. Phys. 241 (2003), no. 2-3, 383-420. MR 2013804 Zbl 1098.81040 · Zbl 1098.81040
[53] P. Steinhagen, Über die größte Kugel in einer konvexen Punktmenge. Abh. Math. Sem. Univ. Hamburg 1(1921), no. 1, 15-26.MR 3069385 JFM 48.0837.03 · JFM 48.0837.03
[54] G. Szegő, Inequalities for certain eigenvalues of a membrane of given area. J. Rational Mech. Anal. 3(1954). 343-356.MR 0061749 Zbl 0055.08802 · Zbl 0055.08802
[55] B. Velichkov, Existence and regularity results for some shape optimization problems. Tesi. Scuola Normale Superiore di Pisa (Nuova Series), 19. Edizioni della Normale, Pisa, 2015.MR 3309888 Zbl 1316.49006 · Zbl 1316.49006
[56] T. Weidl, Improved Berezin-Li-Yau inequalities with a remainder term. In T. Suslina and D. Yafaev (eds.), Spectral theory of differential operators. M. Sh. Birman 80th anniversary collection. American Mathematical Society Translations, Series 2, 225. Advances in the Mathematical Sciences, 62. American Mathematical Society, Providence, R.I., 2008, 253-263.MR 2509788 Zbl 1168.35404 · Zbl 1152.47002
[57] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(1912), no. 4, 441-479.MR 1511670 JFM 43.0436 · JFM 43.0436.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.