×

Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain. (English) Zbl 1467.35107

In the interesting paper under review the authors prove a two-term Weyl-type asymptotic formula for sums of eigenvalues \(0<\lambda_1\leq \lambda_2\leq\ldots\) repeated according to multiplicities, of the Dirichlet Laplacian \(-\Delta_\Omega\) in a bounded open set \(\Omega\subset\mathbb{R}^d,\) \(d\geq2,\) with Lipschitz boundary. Precisely, setting \(L_d=\frac{2}{2+d}\frac{\omega_d}{(2\pi)^d},\) it is proved that \[ \sum_{\lambda_k<\lambda}(\lambda-\lambda_k)=L_d|\Omega|\lambda^{1+\frac{d}{2}}- \frac{L_{d-1}}{4}\mathcal{H}^{d-1}(\partial\Omega)\lambda^{1+\frac{d-1}{2}}+o\left(\lambda^{1+\frac{d-1}{2}}\right) \] as \(\lambda\to\infty,\) where \(\omega_d\) is the measure of the unit ball in \(\mathbb{R}^d\) and \(\mathcal{H}^{d-1}(\partial\Omega)\) stands for the \((d-1)\)-dimensional Hausdorff measure of \(\partial\Omega.\)
In the case when \(\Omega\) is a convex domain, the universal bound \[ \left| \sum_{\lambda_k<\lambda}(\lambda-\lambda_k)-L_d|\Omega|\lambda^{1+\frac{d}{2}}+ \frac{L_{d-1}}{4}\mathcal{H}^{d-1}(\partial\Omega)\lambda^{1+\frac{d-1}{2}}\right| \leq C \mathcal{H}^{d-1}(\partial\Omega)\lambda^{1+\frac{d-1}{2}}\left(r_{\mathrm{in}}(\Omega)\sqrt{\lambda} \right)^{-\frac{1}{11}} \] is obtained that reproduces correctly the first two terms in the asymptotics.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P15 Estimates of eigenvalues in context of PDEs
35P20 Asymptotic distributions of eigenvalues in context of PDEs

References:

[1] M. Aizenman and E. H. Lieb, On semiclassical bounds for eigenvalues of Schrödinger operators, Phys. Lett. A 66 (1978), no. 6, 427-429.
[2] L. Ambrosio, A. Colesanti and E. Villa, Outer Minkowski content for some classes of closed sets, Math. Ann. 342 (2008), no. 4, 727-748. · Zbl 1152.28005
[3] R. Bañuelos, T. Kulczycki and B. O. Siudeja, On the trace of symmetric stable processes on Lipschitz domains, J. Funct. Anal. 257 (2009), no. 10, 3329-3352. · Zbl 1189.60100
[4] F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134-1167. · Zbl 0247.47019
[5] M. Bronstein and V. Ivrii, Sharp spectral asymptotics for operators with irregular coefficients. I. Pushing the limits, Comm. Partial Differential Equations 28 (2003), no. 1-2, 83-102. · Zbl 1027.58019
[6] R. M. Brown, The trace of the heat kernel in Lipschitz domains, Trans. Amer. Math. Soc. 339 (1993), no. 2, 889-900. · Zbl 0853.35083
[7] H. Federer, Geometric measure theory, Grundlehren Math. Wiss. 153, Springer, New York 1969. · Zbl 0176.00801
[8] R. L. Frank and L. Geisinger, Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain, Mathematical results in quantum physics, World Scientific, Hackensack (2011), 138-147. · Zbl 1253.47031
[9] R. L. Frank and L. Geisinger, Semi-classical analysis of the Laplace operator with Robin boundary conditions, Bull. Math. Sci. 2 (2012), no. 2, 281-319. · Zbl 1253.35090
[10] R. L. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. reine angew. Math. 712 (2016), 1-37. · Zbl 1337.35163
[11] L. Geisinger, A. Laptev and T. Weidl, Geometrical versions of improved Berezin-Li-Yau inequalities, J. Spectr. Theory 1 (2011), no. 1, 87-109. · Zbl 1257.35138
[12] L. Geisinger and T. Weidl, Universal bounds for traces of the Dirichlet Laplace operator, J. Lond. Math. Soc. (2) 82 (2010), no. 2, 395-419. · Zbl 1230.35077
[13] E. M. Harrell, II, L. Provenzano and J. Stubbe, Complementary asymptotically sharp estimates for eigenvalue means of Laplacians, preprint (2018), https://arxiv.org/abs/1806.10366; to appear in Int. Math. Res. Not. IMRN.
[14] E. M. Harrell, II and J. Stubbe, Two-term, asymptotically sharp estimates for eigenvalue means of the Laplacian, J. Spectr. Theory 8 (2018), no. 4, 1529-1550. · Zbl 1402.58020
[15] J. Hersch, Sur la fréquence fondamentale d’une membrane vibrante: évaluations par défaut et principe de maximum, Z. Angew. Math. Phys. 11 (1960), 387-413. · Zbl 0104.41403
[16] V. Ivrii, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 25-34.
[17] V. Ivrii, Sharp spectral asymptotics for operators with irregular coefficients, Int. Math. Res. Not. IMRN 2000 (2000), no. 22, 1155-1166. · Zbl 1123.35339
[18] V. Ivrii, Sharp spectral asymptotics for operators with irregular coefficients. II. Domains with boundaries and degenerations, Comm. Partial Differential Equations 28 (2003), no. 1-2, 103-128. · Zbl 1027.58020
[19] H. Kovařík, S. Vugalter and T. Weidl, Two-dimensional Berezin-Li-Yau inequalities with a correction term, Comm. Math. Phys. 287 (2009), no. 3, 959-981. · Zbl 1197.35182
[20] S. Larson, A bound for the perimeter of inner parallel bodies, J. Funct. Anal. 271 (2016), no. 3, 610-619. · Zbl 1341.52005
[21] S. Larson, On the remainder term of the Berezin inequality on a convex domain, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2167-2181. · Zbl 1377.35206
[22] S. Larson, Asymptotic shape optimization for Riesz means of the Dirichlet Laplacian over convex domains, J. Spectr. Theory (2019), 10.4171/JST/265. · Zbl 1425.35126 · doi:10.4171/JST/265
[23] P. Li and S. T. A. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309-318. · Zbl 0554.35029
[24] A. D. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proc. Amer. Math. Soc. 131 (2003), no. 2, 631-636. · Zbl 1015.58011
[25] M. H. Protter, A lower bound for the fundamental frequency of a convex region, Proc. Amer. Math. Soc. 81 (1981), no. 1, 65-70. · Zbl 0476.35060
[26] G. V. Rozenbljum, The eigenvalues of the first boundary value problem in unbounded domains, Mat. Sb. (N. S.) 89 (131) (1972), 234-247, 350.
[27] R. Schneider, Convex bodies: The Brunn-Minkowski theory, 2nd expanded ed., Encyclopedia Math. Appl. 151, Cambridge University, Cambridge 2014. · Zbl 1287.52001
[28] R. Seeley, A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of \(\mathbf{R}}^{3\), Adv. Math. 29 (1978), no. 2, 244-269. · Zbl 0382.35043
[29] R. Seeley, An estimate near the boundary for the spectral function of the Laplace operator, Amer. J. Math. 102 (1980), no. 5, 869-902. · Zbl 0447.35029
[30] J. P. Solovej and W. L. Spitzer, A new coherent states approach to semiclassics which gives Scott’s correction, Comm. Math. Phys. 241 (2003), no. 2-3, 383-420. · Zbl 1098.81040
[31] M. van den Berg, A uniform bound on trace(e^{t\Delta}) for convex regions in \(\mathbf{R}}^{n\) with smooth boundaries, Comm. Math. Phys. 92 (1984), no. 4, 525-530.
[32] M. van den Berg, On the asymptotics of the heat equation and bounds on traces associated with the Dirichlet Laplacian, J. Funct. Anal. 71 (1987), no. 2, 279-293. · Zbl 0632.35016
[33] D. G. Vassiliev, Two-term asymptotic behavior of the spectrum of a boundary value problem in interior reflection of general form, Funct. Anal. Appl. 18 (1984), no. 4, 267-277. · Zbl 0574.35032
[34] D. G. Vassiliev, Two-term asymptotic behavior of the spectrum of a boundary value problem in the case of a piecewise smooth boundary, Dokl. Akad. Nauk SSSR 286 (1986), no. 5, 1043-1046.
[35] T. Weidl, Improved Berezin-Li-Yau inequalities with a remainder term, Spectral theory of differential operators, Amer. Math. Soc. Transl. Ser. 2 225, American Mathematical Society, Providence (2008), 253-263. · Zbl 1168.35404
[36] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441-479. · JFM 43.0436.01
[37] H. Weyl, Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgesetze, J. reine angew. Math. 143 (1913), 177-202. · JFM 44.1053.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.