×

On the minimization of Dirichlet eigenvalues. (English) Zbl 1317.49052

Two main results are proven in this paper. Given an open convex set \(\Omega\subset {\mathbb R}^m\) of finite Lebesgue measure with Dirichlet eigenvalues \(\lambda_j(\Omega)\), \(j\in {\mathbb N}\), the following problem is considered: \[ I_k(c)=\inf\{\lambda_k(\Omega):\Omega\subset {\mathbb R}^m \text{ open and convex}, \mathcal{T}(\Omega)=c\}. \tag{*} \] Here \(\mathcal{T}\) is a function defined on the space of open convex sets in \({\mathbb R}^m\), satisfying some of the following hypothesis
(a)
\(\mathcal{T}\) is invariant under isometries, monotone (\(\Omega_1\subset\Omega_2\Rightarrow\mathcal{T}(\Omega_1)\leq \mathcal{T}(\Omega_2)\)), and non-negative (\(\mathcal{T}(\Omega)=0 \Leftrightarrow \Omega=\emptyset\)).
(b)
\(\mathcal{T}(\alpha\Omega)=\alpha^\tau\mathcal{T}(\Omega)\) for some \(\tau>0\) and every \(\alpha>0\).
(c1)
\(T^*=\inf\{\mathcal{T}(\Omega): \Omega\subset\mathbb{R}^m \text{ open and convex}, |\Omega|=1\}>0\).
(c2)
There exists an open convex set \(D\subset\mathbb{R}^m\) with \(|D|=1\), unique up to isometries, such that \(T^*=\mathcal{T}(D)\).
(d)
There exist constants \(K<\infty\) and \(t>1/\tau\) such that, if \(\Omega\subset\mathbb{R}^m\) is an open bounded convex set, then \(\text{diam}(\Omega)\leq K\mathcal{T}(\Omega)^t|\Omega|^{(1-t\tau)/m}\).
Under these assumptions, the author proves in Theorem 1: (i) if \(\mathcal{T}\) satisfies (a), (b) and (c1), then the variational problem (*) has a minimizer; (ii) if \(\mathcal{T}\) satisfies (a), (b), (c2) and (d), and \((\Omega^*_k)_{k\in\mathbb{N}}\) are minimizers of (*) for \(k\in\mathbb{N}\), then there exists a sequence of isometric copies of these minimizers \((\Omega^{**}_k)_{k\in\mathbb{N}}\) such that \[ \Omega^{**}_k\to \left(c\over{\mathcal{T}(D)}\right)^{1/\tau}D, \] in both the Hausdorff metric and the complementary Hausdorff metric. Taking \(\mathcal{T}\) as the Lebesgue measure, (a), (b) and (c1) are satisfied, but neither (c2) nor (d). The perimeter functional satisfies all properties (a), (b), (c1), (c2) and (d) (see the proof of Corollary 5) as well as the moment of inertia of an open set with respect to its center of mass (see the proof of Corollary 6).
The second result in this paper is Theorem 2, providing relations between \(\pi_k\), \(\mu_k\) and \(\omega_m\), for all integers \(m\geq 2\) and \(k\geq 1\). Here \(\omega_m\) is the Lebesgue measure of the unit ball in \(\mathbb{R}^m\), and \(\pi_k\) and \(\mu_k\) are defined by \[ \pi_k=\inf\{|\Omega|:\Omega\in\mathfrak{B}_k\},\quad\mu_k=\inf\{|\Omega|:\Omega\in \mathfrak{M}_k\}, \] where \(\mathfrak{B}_k\) is the set of minimizers of \(\inf\{\lambda_k(\Omega):\Omega\subset\mathbb{R}^m \text{ open}, \mathcal{P}(\Omega)=1,|\Omega|<\infty\}\), and \(\mathfrak{M}_k\) is the set of minimizers of \(\inf\{\lambda_k(\Omega):\Omega\subset\mathbb{R}^m \text{ quasi-open},|\Omega|=1\}\).

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49R05 Variational methods for eigenvalues of operators
35J25 Boundary value problems for second-order elliptic equations
35P15 Estimates of eigenvalues in context of PDEs

References:

[1] M.van den Berg, M.Iversen, ‘On the minimization of Dirichlet eigenvalues of the Laplace operator’, J. Geom. Anal., 23 (2013) 660-676. · Zbl 1262.49044
[2] D.Bucur, ‘Minimization of the k‐th eigenvalue of the Dirichlet Laplacian’, Arch. Ration. Mech. Anal., 206 (2012) 1073-1083. · Zbl 1254.35165
[3] D.Bucur, G.Buttazzo, Variational methods in shape optimization problems, Progress in Nonlinear Differential Equations and their Applications (Birkhäuser, Boston, 2005). · Zbl 1117.49001
[4] D.Bucur, G.Buttazzo, A.Henrot, ‘Minimization of \(\lambda_2 ( \operatorname{\Omega} )\) with a perimeter constraint’, Indiana Univ. Math. J., 58 (2009) 2709-2728. · Zbl 1186.49032
[5] D.Bucur, P.Freitas, ‘Asymptotic behaviour of optimal spectral planar domains with fixed perimeter’, J. Math. Phys., 54 (2013) 053504. · Zbl 1290.35164
[6] E. B.Davies, ‘A review of Hardy inequalities’, The Maz’ya Anniversary Collection 2, Oper. Theory Adv. Appl., 110 (1999) 55-67. · Zbl 0936.35121
[7] G.De Philippis, B.Velichkov, ‘Existence and regularity of minimizers for some spectral functionals with perimeter constraint’, Appl. Math. Optim., 69 (2014) 199-231. · Zbl 1297.49077
[8] P.Gritzmann, J.Wills, D.Wrase, ‘A new isoperimetric inequality’, J. reine angew. Math., 379 (1987) 22-30. · Zbl 0611.52009
[9] A.Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics (Birkhäuser, Basel, 2006). · Zbl 1109.35081
[10] A.Henrot, E.Oudet, ‘Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions’, Arch. Ration. Mech. Anal., 169 (2003) 73-87. · Zbl 1055.35080
[11] A.Henrot, M.Pierre, Variation et optimisation de formes: Une analyse géométrique, Mathématiques et Applications 48 (Springer, Berlin, 2005). · Zbl 1098.49001
[12] M.‐T.Kohler‐Jobin, ‘Démonstration de l’inégalité isopérimétrique \(P \lambda^2 \geqslant \pi j_0^4 / 2\), conjecture par Pólya et Szegö’, C. R. Acad. Sci. Paris Sér., A‐B 281 (1975) A119-A121. · Zbl 0303.52003
[13] M.‐T.Kohler‐Jobin, ‘Une méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique. I. Une démonstration de la conjecture isopérimétrique \(P \lambda^2 \geqslant \pi j_0^4 / 2\) de Pólya et Szegö’, Z. Angew. Math. Phys., 29 (1978) 757-766. · Zbl 0427.73056
[14] P.Li, S. T.Yau, ‘On the Schrödinger equation and the eigenvalue problem’, Comm. Math. Phys., 88 (1983) 309-318. · Zbl 0554.35029
[15] D.Mazzoleni, A.Pratelli, ‘Existence of minimizers for spectral problems’, J. Math. Pures Appl., 100 (2013) 433-453. · Zbl 1296.35100
[16] R.Osserman, ‘Bonnesen‐style isoperimetric inequalities’, Amer. Math. Monthly, 86 (1979) 1-29. · Zbl 0404.52012
[17] B.Simon, Functional integration and quantum physics (Academic Press, New York, NY, 1979). · Zbl 0434.28013
[18] S. A.Wolf, J. B.Keller, ‘Range of the first two eigenvalues of the Laplacian’, Proc. R. Soc. Lond., A 447 (1994) 397-412. · Zbl 0816.35097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.