×

Maximal \(m\)-subharmonic functions and the Cegrell class \(\mathcal{N}_m\). (English) Zbl 1425.32029

Summary: In this paper, we will study the maximality of functions and a new Cegrell class \(\mathcal{N}_m(\varOmega)\) which is between the classes \(\mathcal{F}_m(\varOmega)\) and \(\mathcal{E}_m(\varOmega)\). We study the Dirichlet problem, the subsolution theorem and the stability theorem for this class.

MSC:

32U05 Plurisubharmonic functions and generalizations
31C05 Harmonic, subharmonic, superharmonic functions on other spaces
Full Text: DOI

References:

[1] Åhag, P., Dirichlet problem for the complex Monge-Ampère operator in \(F(f)\), Michigan Math. J., 55, 123-138 (2007) · Zbl 1152.32020
[2] Åhag, P.; Cegrell, U.; Czyż, R.; Hiep, P. H., Monge-Ampère measures on pluripolar sets, J. Math. Pures Appl., 92, 613-627 (2009) · Zbl 1186.32012
[3] Åhag, P.; Czyż, R.; Hed, L., The geometry of \(m\)-hyperconvex domains, J. Geom. Anal., 1-27 (2017), published online
[4] Åhag, P.; Czyż, R.; Hed, L., Extension and approximation of \(m\)-subharmonic functions, Complex Var. Elliptic Equ., 63, 783-801 (2018) · Zbl 1390.32023
[5] Armitage, D. H.; Gardiner, S. J., Classical potential theory, (Springer Monogr. Math. (2001), Springer) · Zbl 0972.31001
[6] Błocki, Z., Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci. Math., 41, 151-157 (1993) · Zbl 0795.32003
[7] Błocki, Z., Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55, 5, 1735-1756 (2005) · Zbl 1081.32023
[8] Caffarelli, L.; Nirenberg, L.; Spruck, J., The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., 155, 261-301 (1985) · Zbl 0654.35031
[9] Cegrell, U., Pluricomplex energy, Acta Math., 180, 2, 187-217 (1998) · Zbl 0926.32042
[10] Cegrell, U., The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble), 54, 159-179 (2004)
[11] Cegrell, U., A general Dirichlet problem for the complex Monge-Ampère operator, Ann. Polon. Math., 94, 131-147 (2008) · Zbl 1166.32017
[12] Cegrell, U., Maximal plurisubharmonic functions, Uzbek. Mat. Zh., 1, 10-16 (2009)
[13] Czyż, R., The complex Monge-Ampère operator in the Cegrell classes, Dissertationes Math., 466, 83 (2009) · Zbl 1217.32015
[14] Czyż, R., On a Monge-Ampère type equation in the Cegrell class \(E_\chi \), Ann. Polon. Math., 99, 1, 89-97 (2010) · Zbl 1218.32019
[15] Czyż, R.; Nguyen, V. T., On a constant in the energy estimate, C. R. Math., 355, 10, 1050-1054 (2017) · Zbl 1397.32012
[16] Dinew, S.; Kołodziej, S., A priori estimates for the complex Hessian equations, Anal. PDE, 1, 227-244 (2014) · Zbl 1297.32020
[17] Dinew, S.; Kołodziej, S., Liouville and Calabi-Yau type theorems for complex Hessian equations, Amer. J. Math., 139, 403-415 (2017) · Zbl 1372.32027
[18] Hed, L., Approximation of negative plurisubharmonic functions with given boundary values, Internat. J. Math., 21, 9, 1135-1145 (2010) · Zbl 1207.32031
[19] Hung, V. V.; Phu, N. V., Hessian measures on m-polar sets and applications to the complex Hessian equations, Complex Var. Elliptic Equ., 62, 8, 1135-1164 (2017) · Zbl 1371.32018
[20] Khue, N. V.; Hiep, P. H., A comparison principle for the complex Monge-Ampère operator in Cegrell’s classes and applications, Trans. Amer. Math. Soc., 361, 5539-5554 (2009) · Zbl 1179.32014
[21] Li, S. Y., On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math., 8, 87-106 (2004) · Zbl 1068.32024
[22] Lu, H. C., Complex Hessian Equations (2012), University of Toulouse III Paul Sabatier, Doctoral thesis
[23] Lu, H. C., Solutions to degenerate complex Hessian equations, J. Math. Pures Appl. (9), 100, 6, 785-805 (2013) · Zbl 1288.53072
[24] Lu, H. C., Viscosity solutions to complex Hessian equations, J. Funct. Anal., 264, 6, 1355-1379 (2013) · Zbl 1266.32048
[25] Lu, H. C., A variational approach to complex Hessian equations in \(\mathbb{C}^n\), J. Math. Anal. Appl., 431, 1, 228-259 (2015) · Zbl 1326.32056
[26] Nguyen, N. C., Subsolution theorem for the complex Hessian equation, Univ. Iagel. Acta Math., 50, 69-88 (2013) · Zbl 1295.32043
[27] Nguyen, N. C., Weak Solutions to the Complex Hessian Equation (2014), Jagiellonian University, Doctoral thesis
[28] Nguyen, N. C., Hölder continuous solutions to complex Hessian equations, Potential Anal., 41, 3, 887-902 (2014) · Zbl 1302.32034
[29] Nguyen, V. T., On delta \(m\)-subharmonic functions, Ann. Polon. Math, 118, 25-49 (2016) · Zbl 1367.32025
[30] Nguyen, V. T., A characterization of Cegrell’s classes and generalized \(m\)-capacities, Ann. Polon. Math., 121, 33-43 (2018) · Zbl 1422.32032
[31] Nguyen, V. T., The convexity of radially symmetric \(m\)-subharmonic functions, Complex Var. Elliptic Equ., 63, 10, 1396-1407 (2018) · Zbl 1404.32065
[32] Sadullaev, A., Plurisubharmonic measures and capacities on complex manifolds, Uspekhi Mat. Nauk, 36, 1, 53-105 (1981), English transl.: Russian Math. Surveys 36 (1981), 61-119 · Zbl 0475.31006
[33] Sadullaev, A.; Abdullaev, B., Capacities and Hessians in the class of \(m\)-subharmonic functions, Dokl. Akad. Nauk, 448, 5, 515-517 (2013) · Zbl 1277.32035
[34] Wang, X.-J., The \(k\)-Hessian equation, Lect. Notes Math., 1977 (2009) · Zbl 1196.35093
[35] Xing, Y., Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc., 124, 457-467 (1996) · Zbl 0849.31010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.