×

Hölder continuous solutions to complex Hessian equations. (English) Zbl 1302.32034

We call a \(C^2\) function \(u:\Omega \to \mathbb R\) \(m\)-subharmonic (\(m\)-sh) if \(\Omega \subset \mathbb C ^n\) and the forms \[ (dd^c u)^k \wedge \beta ^{n-k} \] are positive for \(k=1, \dots , m\) with \(\beta = dd^c ||z||^2\). If \(u\) is subharmonic but not smooth then one can define an \(m\)-sh function via inequalities for currents. A domain is strictly \(m\)-pseudoconvex if it has a smooth \(m\)-subharmonic defining function. The author considers the Dirichlet problem for the Hessian equation \[ (dd^c u)^m \wedge \beta ^{n-m} = f\beta ^n , \] for given nonnegative \(f\in L^p (\Omega )\) with \(mp>n\) and \(C^{1,1}\) boundary data. He proves that the solution \(u\) is Hölder continuous, with an explicit exponent, if \(f\) is bounded near the boundary or has a controlled growth there.

MSC:

32U05 Plurisubharmonic functions and generalizations
32U40 Currents
35J99 Elliptic equations and elliptic systems

References:

[1] Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, 1-44 (1976) · Zbl 0315.31007 · doi:10.1007/BF01418826
[2] Błocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier (Grenoble) 55(5), 1735-1756 (2005) · Zbl 1081.32023 · doi:10.5802/aif.2137
[3] Cegrell, U.: Pluricomplex energy. Acta Math. 180:2, 187-217 (1998) · Zbl 0926.32042 · doi:10.1007/BF02392899
[4] Chen, X.X., Donaldson, S., Sun, S.: Kähler-Einstein Metrics on Fano Manifolds I: Approximation of Metrics with Cone Singularities, preprint. arXiv:1211.4566 · Zbl 1312.53096
[5] Chinh, L.H.: Solutions to Degenerate Complex Hessian Equations. J.Math. Pures Appl. 100(6), 785-805 (2013) · Zbl 1288.53072 · doi:10.1016/j.matpur.2013.03.002
[6] Chinh, L.H.: Viscosity Solution to Complex Hessian Equations. J. Funct. Anal. 264(6), 1355-1379 (2013) · Zbl 1266.32048 · doi:10.1016/j.jfa.2013.01.001
[7] Demailly, JP, Potential theory in several complex variable (1989), Nice
[8] Demailly, J.-P., Dinew, S., Guedj, V., Pham, H.H., Kołodziej, S., Zeriahi, A.: Hölder Continuous Solutions to Monge-Ampère Equations. preprint. to apear in JEMS. arXiv:1112.1388v1 · Zbl 1296.32012
[9] Dinew, S., Kołodziej, S. A priori estimates for the complex Hessian equations, preprint. arXiv:1112.3063 to appear in Analysis and PDE (2014) · Zbl 1297.32020
[10] Dinew, S., Kołodziej, S.: Liouville and Calabi-Yau Type Theorems for Complex Hessian Equations. preprint. arXiv:1203.3995v1 · Zbl 1372.32027
[11] Dinh, T.C., Nguyen, V.A., Sibony, N.: Exponential estimates for plurisubharmonic functions and stochastic dynamics. J. Differ. Geom. 84, 465-488 (2010) · Zbl 1211.32021
[12] Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler-Einstein metrics. J. Am. Math. Soc. 22, 607-639 (2009) · Zbl 1215.32017 · doi:10.1090/S0894-0347-09-00629-8
[13] Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957-965 (1959) · Zbl 0090.01603
[14] Guedj, V., Kołodziej, S., Zeriahi, A.: Hölder continuous solutions to Monge-Ampère equations. Bull. Lond. Math. Soc. 40, 1070-1080 (2008) · Zbl 1157.32033 · doi:10.1112/blms/bdn092
[15] Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Grundl. der Math. Wiss, vol. 244. Springer Verlag (1998) · Zbl 1042.35002
[16] Han, Q., Lin, F.: Elliptic partial differential equations. Courant Lecture Notes in Mathematics, vol. 1. New York University. · Zbl 1210.35031
[17] Hou, Z., Ma, X.-N., Wu, D.: A second order estimate for complex Hessian equations on a compact Kähler manifold. Math. Res. Lett. 17, 547-561 (2010) · Zbl 1225.32026 · doi:10.4310/MRL.2010.v17.n3.a12
[18] Kołodziej, S.: The complex Monge-Ampère equation. Acta Math. 180(1), 69-117 (1998) · Zbl 0913.35043 · doi:10.1007/BF02392879
[19] Kołodziej, S.: Hölder continuity of solutions to the complex Monge-Ampère equation with the right hand side in Lp. The case of compact Kähler manifolds. Math. Ann. 342, 379-386 (2008) · Zbl 1149.32018 · doi:10.1007/s00208-008-0239-y
[20] Li, S.-Y.: On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math. 8, 87-106 (2004) · Zbl 1068.32024 · doi:10.4310/AJM.2004.v8.n1.a8
[21] Nguyen, N.-C.: Subsolution Theorem for the Complex Hessian Equation. Univ. Iagiell. Acta Math. 50, 69-88 (2012) · Zbl 1295.32043
[22] Phong, D.H., Song, J., Sturm, J.: Complex Monge-Ampère equations. Surv. Differ. Geom. 17, 327-411 (2012) · Zbl 1382.32023 · doi:10.4310/SDG.2012.v17.n1.a8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.