×

Nonlinear singular perturbations of the fractional Schrödinger equation in dimension one. (English) Zbl 1421.35299

Summary: The paper discusses nonlinear singular delta-type perturbations of the fractional Schrödinger equation \(\imath\partial_t\psi=(-\Delta)^s\psi\), with \(s\in (\frac{1}{2}, 1]\), in dimension one. In particular, we investigate local and global well-posedness (in a strong sense), conservation laws and the existence of blow-up solutions and standing waves.

MSC:

35Q40 PDEs in connection with quantum mechanics
35R11 Fractional partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
34K37 Functional-differential equations with fractional derivatives
35B44 Blow-up in context of PDEs
35B25 Singular perturbations in context of PDEs

References:

[1] Abramovitz M and Stegun I A 1964 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables(National Bureau of Standards Applied Mathematics Series vol 55) (Washington, DC: US Government Printing Office) · Zbl 0171.38503
[2] Adami R, Carlone R, Correggi M and Tentarelli L 2018 Blow-up for the pointwise NLS in dimension two: absence of critical power (arXiv:1808.10343 [math.AP])
[3] Adami R, Dell’Antonio G, Figari R and Teta A 2003 The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity Ann. Inst. Henri Poincaré20 477-500 · Zbl 1028.35137 · doi:10.1016/S0294-1449(02)00022-7
[4] Adami R, Dell’Antonio G, Figari R and Teta A 2004 Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity Ann. Inst. Henri Poincaré21 121-37 · Zbl 1042.35070
[5] Adami R and Teta A 2001 A class of nonlinear Schrödinger equations with concentrated nonlinearity J. Funct. Anal.180 148-75 · Zbl 0979.35130 · doi:10.1006/jfan.2000.3697
[6] Albeverio S, Gesztesy F, Høegh-Krohn R and Holden H 1988 Solvable Models in Quantum Mechanics(Texts and Monographs in Physics) (New York: Springer) · Zbl 0679.46057 · doi:10.1007/978-3-642-88201-2
[7] Bertoin J 1996 Lévy Processes(Cambridge Tracts in Mathematics vol 121) (Cambridge: Cambridge University Press) · Zbl 0861.60003
[8] Boulenger T, Himmelsbach D and Lenzmann E 2016 Blowup for fractional NLS J. Funct. Anal.271 2569-603 · Zbl 1348.35038 · doi:10.1016/j.jfa.2016.08.011
[9] Brezis H and Mironescu P 2001 Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces J. Evol. Equ.1 387-404 · Zbl 1023.46031 · doi:10.1007/PL00001378
[10] Cacciapuoti C, Carlone R, Noja D and Posilicano A 2017 The one-dimensional Dirac equation with concentrated nonlinearity SIAM J. Math. Anal.49 2246-68 · Zbl 1371.35236 · doi:10.1137/16M1084420
[11] Cacciapuoti C, Finco D, Noja D and Teta A 2014 The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit Lett. Math. Phys.104 1557-70 · Zbl 1303.81072 · doi:10.1007/s11005-014-0725-y
[12] Cacciapuoti C, Finco D, Noja D and Teta A 2017 The point-like limit for a NLS equation with concentrated nonlinearity in dimension three J. Funct. Anal.273 1762-809 · Zbl 1378.35274 · doi:10.1016/j.jfa.2017.04.011
[13] Carlone R, Correggi M and Figari R 2017 Two-dimensional time-dependent point interactions Functional Analysis and Operator Theory for Quantum Physics(EMS Series of Congress Reports) (Zürich: European Mathematical Society) pp 189-211 · Zbl 1372.81038 · doi:10.4171/175-1/10
[14] Carlone R, Correggi M and Tentarelli L 2019 Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity Ann. Inst. Henri Poincaré36 257-94 · Zbl 1410.35196 · doi:10.1016/j.anihpc.2018.05.003
[15] Carlone R, Figari R and Negulescu C 2017 The quantum beating and its numerical simulation J. Math. Anal. Appl.450 1294-316 · Zbl 1376.81077 · doi:10.1016/j.jmaa.2017.01.047
[16] Carlone R, Fiorenza A and Tentarelli L 2017 The action of Volterra integral operators with highly singular kernels on Hölder continuous, Lebesgue and Sobolev functions J. Funct. Anal.273 1258-94 · Zbl 1530.47060 · doi:10.1016/j.jfa.2017.04.013
[17] Cho Y, Hajaiej H, Hwang G and Ozawa T 2013 On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity Funkcial. Ekvac.56 193-224 · Zbl 1341.35138 · doi:10.1619/fesi.56.193
[18] Cho Y, Hwang G, Kwon S and Lee S 2013 Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations Nonlinear Anal.86 12-29 · Zbl 1278.35227 · doi:10.1016/j.na.2013.03.002
[19] Cho Y, Hwang G, Kwon S and Lee S 2015 On finite time blow-up for the mass-critical Hartree equations Proc. R. Soc. Edinburgh A 145 467-79 · Zbl 1326.35298 · doi:10.1017/S030821051300142X
[20] Dávila J, del Pino M, Dipierro S and Valdinoci E 2015 Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum Anal. PDE8 1165-235 · Zbl 1366.35215 · doi:10.2140/apde.2015.8.1165
[21] Dipierro S, Savin O and Valdinoci E 2017 All functions are locally s-harmonic up to a small error J. Eur. Math. Soc.19 957-66 · Zbl 1371.35323 · doi:10.4171/JEMS/684
[22] Dipierro S and Valdinoci E 2018 A simple mathematical model inspired by the Purkinje cells: from delayed travelling waves to fractional diffusion Bull. Math. Biol.80 1849 · Zbl 1402.35284 · doi:10.1007/s11538-018-0437-z
[23] Di Nezza E, Palatucci G and Valdinoci E 2012 Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math.136 521-73 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[24] Erdélyi A, Magnus W, Oberhettinger F and Tricomi F G 1981 Higher Transcendental Functions vol III (Malabar, FL: Krieger)
[25] Esfahani A 2015 Anisotropic Gagliardo-Nirenberg inequality with fractional derivatives Z. Angew. Math. Phys.66 3345-56 · Zbl 1337.26030 · doi:10.1007/s00033-015-0586-y
[26] Glassey R T 1977 On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations J. Math. Phys.18 1794-7 · Zbl 0372.35009 · doi:10.1063/1.523491
[27] Gradshteyn I S and Ryzhik I M 2007 Tables of Integrals, Series and Products (Amsterdam: Elsevier) · Zbl 1208.65001
[28] Guo B and Huo Z 2011 Global well-posedness for the fractional nonlinear Schrödinger equation Commun. PDE36 247-55 · Zbl 1211.35268 · doi:10.1080/03605302.2010.503769
[29] Hong Y and Sire Y 2015 On fractional Schrödinger equations in Sobolev spaces Commun. Pure Appl. Anal.14 2265-82 · Zbl 1338.35466 · doi:10.3934/cpaa.2015.14.2265
[30] Ionescu A D and Pusateri F 2014 Nonlinear fractional Schrödinger equations in one dimension J. Funct. Anal.266 139-76 · Zbl 1304.35749 · doi:10.1016/j.jfa.2013.08.027
[31] Kirkpatrick K and Zhang Y 2016 Fractional Schrödinger dynamics and decoherence Physica D 332 41-54 · Zbl 1415.65235 · doi:10.1016/j.physd.2016.05.015
[32] Krieger J, Lenzmann E and Raphaël P 2013 Nondispersive solutions to the L2-critical half-wave equation Arch. Ration. Mech. Anal.209 61-129 · Zbl 1288.35433 · doi:10.1007/s00205-013-0620-1
[33] Kufner A and Persson L E 2003 Weighted Inequalities of Hardy Type (River Edge, NJ: World Scientific) · Zbl 1065.26018 · doi:10.1142/5129
[34] Landkof N S 1972 Foundations of Modern Potential Theory(Die Grundlehren der Mathematischen Wissenschaften Band vol 180) (New York: Springer) · Zbl 0253.31001 · doi:10.1007/978-3-642-65183-0
[35] Laskin N 2000 Fractional quantum mechanics and Lévy path integrals Phys. Lett. A 268 298-305 · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[36] Laskin N 2002 Fractional Schrödinger equation Phys. Rev. E 66 056108 · doi:10.1103/PhysRevE.66.056108
[37] Lenzi E K, Ribeiro H V, dos Santos M A F, Rossato R and Mendes R S 2013 Time dependent solutions for a fractional Schrödinger equation with delta potentials J. Math. Phys.54 082107 · Zbl 1284.81118 · doi:10.1063/1.4819253
[38] Longhi S 2015 Fractional Schrödinger equation in optics Opt. Lett.40 1117-20 · doi:10.1364/OL.40.001117
[39] Massaccesi A and Valdinoci E 2017 Is a nonlocal diffusion strategy convenient for biological populations in competition? J. Math. Biol.74 113-47 · Zbl 1362.35312 · doi:10.1007/s00285-016-1019-z
[40] Michelangeli A, Ottolini A and Scandone R 2018 Fractional powers and singular perturbations of quantum differential Hamiltonians J. Math. Phys.59 072106 · Zbl 1396.81091 · doi:10.1063/1.5033856
[41] Michelangeli A and Scandone R 2018 Point-like perturbed fractional Laplacians through shrinking potentials of finite range (arXiv:1803.10191 [math.FA])
[42] Miller R K 1971 Nonlinear Volterra Integral Equations(Mathematics Lecture Note Series) (Menlo Park, CA: Benjamin) · Zbl 0448.45004
[43] Morosi C and Pizzocchero L 2018 On the constants for some fractional Gagliardo-Nirenberg and Sobolev inequalities Exp. Math.36 32-77 · Zbl 1396.46030 · doi:10.1016/j.exmath.2017.08.007
[44] Patrizi S and Valdinoci E 2016 Relaxation times for atom dislocations in crystals Calc. Var. PDE55 71 · Zbl 1348.82084 · doi:10.1007/s00526-016-1000-0
[45] Sacchetti A 2018 Stationary solutions of a fractional Laplacian with singular perturbation (arXiv:1801.01694 [math-ph])
[46] Uzar N and Ballikaya S 2013 Investigation of classical and fractional Bose-Einstein condensation for harmonic potential Physica A 392 1733-41 · doi:10.1016/j.physa.2012.11.039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.