×

The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit. (English) Zbl 1303.81072

Summary: In the present paper, we study the following scaled nonlinear Schrödinger equation (NLS) in one space dimension: \[ i\frac{\mathrm {d}}{{\mathrm {d}}t}\psi^{\varepsilon}(t)=-\Delta\psi^{\varepsilon}(t) +\frac{1}{\varepsilon}V\left(\frac{x}{\varepsilon} \right)|\psi^{\varepsilon}(t)|^{2\mu}\psi^{\varepsilon}(t) \quad \varepsilon > 0\quad V\in L^1(\mathbb{R},(1+|x|){\mathrm {d}}x) \cap L^\infty(\mathbb{R}). \] This equation represents a nonlinear Schrödinger equation with a spatially concentrated nonlinearity. We show that in the limit \({\varepsilon\to 0}\) the weak (integral) dynamics converges in \({H^1(\mathbb{R})}\) to the weak dynamics of the NLS with point-concentrated nonlinearity: \[ {i\frac{{\mathrm {d}}}{{\mathrm {d}}t} \psi(t) =H_{\alpha} \psi(t).} \] where \({H_\alpha}\) is the Laplacian with the nonlinear boundary condition at the origin \({\psi'(t,0+)-\psi'(t,0-)=\alpha|\psi(t,0)|^{2\mu}\psi(t,0)}\) and \({\alpha=\int_{\mathbb{R}}V{\mathrm {d}}x}\). The convergence occurs for every \({\mu\in \mathbb{R}^+}\) if \(V \geq~ 0 \) and for every \({\mu\in (0,1)}\) otherwise. The same result holds true for a nonlinearity with an arbitrary number \(N\) of concentration points.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35B25 Singular perturbations in context of PDEs
35B35 Stability in context of PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] Adami R., Dell’Antonio G., Figari R., Teta A.: The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity. Ann. I. H. Poincaré. 20, 477-500 (2003) · Zbl 1028.35137 · doi:10.1016/S0294-1449(02)00022-7
[2] Adami R., Dell’Antonio G., Figari R., Teta A.: Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity. Ann. I. H. Poincaré. 21, 121-137 (2004) · Zbl 1042.35070
[3] Adami R., Noja D., Ortoleva C.: Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three. J. Math. Phys. 54, 013501 (2013) · Zbl 1322.35122 · doi:10.1063/1.4772490
[4] Adami R., Teta A.: A class of nonlinear Schrödinger equations with concentrated nonlinearity. J. Funct. Anal. 180(1), 148-175 (2001) · Zbl 0979.35130 · doi:10.1006/jfan.2000.3697
[5] Albeverio S., Gesztesy F., Högh-Krohn R., Holden H.: Solvable models in quantum mechanics. American Mathematical Society, Providence (2005) · Zbl 1078.81003
[6] Bulashenko, O.M., Kochelap, V.A., Bonilla, L.L.: Coherent patterns and self-induced diffraction of electrons on a thin nonlinear layer. Phys. Rev. B. 54, 1537-1540 (1996)
[7] Buslaev V.S., Komech A.I., Kopylova A.E., Stuart D.: On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator. Comm. Part. Differ. Equat. 33, 669-705 (2008) · Zbl 1185.35247 · doi:10.1080/03605300801970937
[8] Cazenave, T.: Semilinear Schrödinger equations, Courant lecture notes in mathematics, AMS, vol. 10, Providence (2003) · Zbl 1055.35003
[9] Dorr N., Malomed B.A.: Soliton supported by localized nonlinearities in periodic media. Phys. Rev. A. 83 033828-1-033828-21 (2011) · Zbl 1185.35247
[10] Gorenflo, R., Vessella, S: Abel integral equations, lectures notes in mathematics n. 1461, Springer, Berlin Heidelberg (1991)
[11] Jona Lasinio G., Presilla C., Sjöstrand J.: On Schrödinger equations with concentrated nonlinearities. Ann. Phys. (NY). 240, 1-21 (1995) · Zbl 0820.34050 · doi:10.1006/aphy.1995.1040
[12] Kevrekidis P.G., Kivshar Y.S., Kovalev A.S.: Instabilities and bifurcations of nonlinear impurity modes. Phys. Rev. E. 67, 046604-8 (2003)
[13] Komech A.I., Komech A.A.: Global well posedness for the Schrödinger equation coupled to a nonlinear oscillator. Russ. J. Math. Phys. 142, 164-173 (2007) · Zbl 1125.35092 · doi:10.1134/S1061920807020057
[14] Komech A.I., Kopylova E.A., Stuart D.: On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator, II. Comm. Pure Appl. Anal. 202, 1063-1079 (2012) · Zbl 1282.35352
[15] Li, K., Kevrekidis, P.G., Malomed, B.A., Frantzeskakis, D.J.: Transfer and scattering of wave packets by a nonlinear trap. Phys. Rev. E. 84, 056609 (2011)
[16] Malomed B., Azbel M.: Modulational instability of a wave scattered by a nonlinear center. Phys. Rev. B. 47, 10402-10406 (1993) · doi:10.1103/PhysRevB.47.10402
[17] Martel Y.: A wave equation with a Dirac distribution. Port. Math. 52, 343-355 (1995) · Zbl 0849.35019
[18] Noja D., Posilicano A.: Wave equations with concentrated nonlinearities. J. Phys. A Math. Gen. 38, 5011-5022 (2005) · Zbl 1085.81039 · doi:10.1088/0305-4470/38/22/022
[19] Sukhorukov, A., Kivshar, Y., Bang, O., Rasmussen, J.J., Christiansen, P.L.: Nonlinearity and disorder: classification and stability of impurity modes. Phys. Rev. E. 63 036601 (2001) · Zbl 1282.35352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.