×

The action of Volterra integral operators with highly singular kernels on Hölder continuous, Lebesgue and Sobolev functions. (English) Zbl 1530.47060

Summary: For kernels \(\nu\) which are positive and integrable we show that the operator \(g \mapsto J_\nu g = \int_0^x \nu(x - s) g(s) ds\) on a finite time interval enjoys a regularizing effect when applied to Hölder continuous and Lebesgue functions and a “contractive” effect when applied to Sobolev functions. For Hölder continuous functions, we establish that the improvement of the regularity of the modulus of continuity is given by the integral of the kernel, namely by the factor \(N(x) = \int_0^x \nu(s) d s\). For functions in Lebesgue spaces, we prove that an improvement always exists, and it can be expressed in terms of Orlicz integrability. Finally, for functions in Sobolev spaces, we show that the operator \(J_\nu\) “shrinks” the norm of the argument by a factor that, as in the Hölder case, depends on the function \(N\) (whereas no regularization result can be obtained).
These results can be applied, for instance, to Abel kernels and to the Volterra function \(\mathcal{I}(x) = \mu(x, 0, - 1) = \int_0^\infty x^{s - 1} /\Gamma(s) d s\), the latter being relevant for instance in the analysis of the Schrödinger equation with concentrated nonlinearities in \(\mathbb{R}^2\).

MSC:

47G10 Integral operators
45E99 Singular integral equations
44A99 Integral transforms, operational calculus
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
26A33 Fractional derivatives and integrals

References:

[1] Adami, R.; Dell’Antonio, G.; Figari, R.; Teta, A., The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20, 3, 477-500 (2003) · Zbl 1028.35137
[2] Adami, R.; Dell’Antonio, G.; Figari, R.; Teta, A., Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21, 1, 121-137 (2004) · Zbl 1042.35070
[3] Adami, R.; Teta, A., A class of nonlinear Schrödinger equations with concentrated nonlinearity, J. Funct. Anal., 180, 1, 148-175 (2001) · Zbl 0979.35130
[4] Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics, vol. 65 (1975), Academic Press · Zbl 0186.19101
[5] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics (2005), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, with an appendix by Pavel Exner · Zbl 1078.81003
[6] Cacciapuoti, C.; Finco, D.; Noja, D.; Teta, A., The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit, Lett. Math. Phys., 104, 1557-1570 (2014) · Zbl 1303.81072
[7] Cacciapuoti, C.; Finco, D.; Noja, D.; Teta, A., The point-like limit for a NLS equation with concentrated nonlinearity in dimension three, J. Funct. Anal. (2017), in press · Zbl 1378.35274
[8] Cardoso, R. P.; Samko, S. G., Weighted generalized Hölder spaces as well-posedness classes for Sonine integral equations, J. Integral Equations Appl., 20, 4, 437-480 (2008) · Zbl 1158.45001
[9] Carlone, R.; Correggi, M.; Figari, R., Two-Dimensional Time-Dependent Point Interactions, Functional Analysis and Operator Theory for Quantum Physics (2017), European Mathematical Society: European Mathematical Society London · Zbl 1372.81038
[10] Carlone, R.; Correggi, M.; Tentarelli, L., Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity (2017), preprint
[11] Cruz-Uribe, D. V.; Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis (2013), Birkhäuser/Springer: Birkhäuser/Springer Heidelberg · Zbl 1268.46002
[12] Demengel, F.; Demengel, G., Functional Spaces for the Theory of Elliptic Partial Differential Equations, Universitext (2012), Springer: Springer London · Zbl 1239.46001
[13] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023
[14] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcendental Functions, vol. III (1981), Robert E. Krieger Publishing Co., Inc.: Robert E. Krieger Publishing Co., Inc. Melbourne, FL, based on notes left by Harry Bateman, reprint of the 1955 original · Zbl 0064.06302
[15] Fiorenza, R., Hölder and Locally Hölder Continuous Functions, and Open Sets of Class \(C^k, C^{k, \lambda} (2016)\), Birkhäuser/Springer: Birkhäuser/Springer Heidelberg · Zbl 1366.26003
[16] Fiorenza, A.; Krbec, M., Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin., 38, 3, 433-451 (1997) · Zbl 0937.46023
[17] Fiorenza, A.; Krbec, M., A formula for the Boyd indices in Orlicz spaces, Funct. Approx. Comment. Math., 26, 173-179 (1998), dedicated to Julian Musielak · Zbl 0931.46025
[18] Garrappa, R.; Mainardi, F., On Volterra functions and Ramanujan integrals, Analysis (Berlin), 36, 2, 89-105 (2016) · Zbl 1342.45001
[19] Gorenflo, R.; Vessella, S., Abel Integral Equations: Analysis and Applications, Lecture Notes in Mathematics, vol. 1461 (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0717.45002
[20] Hardy, G. H., Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work (1940), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0025.10505
[21] Hardy, G. H.; Littlewood, J. E., Some properties of fractional integrals. I, Math. Z., 27, 1, 565-606 (1928) · JFM 54.0275.05
[22] Hrusa, W.; Renardy, M., A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal., 19, 2, 257-269 (1988) · Zbl 0644.73041
[23] König, H., Grenzordnungen von Operatorenidealen. II, Math. Ann., 212, 65-77 (1974/1975) · Zbl 0278.47024
[24] Krasnosel’skiĭ, M. A.; Rutickiĭ, Ya. B., Convex Functions and Orlicz Spaces (1961), P. Noordhoff Ltd.: P. Noordhoff Ltd. Groningen · Zbl 0095.09103
[25] Kufner, A.; Persson, L. E., Weighted Inequalities of Hardy Type (2003), World Scientific Publishing Co.: World Scientific Publishing Co. NJ · Zbl 1065.26018
[26] Ladopoulos, E.; Zisis, V. A., Existence and uniqueness for non-linear singular integral equations used in fluid mechanics, Appl. Math., 42, 5, 345-367 (1997) · Zbl 0906.76076
[27] Maligranda, L., Indices and interpolation, Dissertationes Math. (Rozprawy Mat.), 234, 49 (1985) · Zbl 0566.46038
[28] Okikiolu, G. O., Aspects of the Theory of Bounded Integral Operators in \(L^p\) Spaces (1971), Academic Press: Academic Press London, New York · Zbl 0219.44002
[29] O’Neil, R., Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc., 115, 300-328 (1965) · Zbl 0132.09201
[30] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146 (1991), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0724.46032
[31] Samko, S. G.; Cardoso, R. P., Sonine integral equations of the first kind in \(L_p(0, b)\), Fract. Calc. Appl. Anal., 6, 3, 235-258 (2003) · Zbl 1073.45516
[32] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Yverdon, edited and with a foreword by S.M. Nikol’skiĭ, translated from the 1987 Russian original, revised by the authors · Zbl 0818.26003
[33] Samko, S. G.; Mussalaeva, Z. U., Fractional type operators in weighted generalized Hölder spaces, Georgian Math. J., 1, 5, 537-559 (1994) · Zbl 0810.26005
[34] Sharpley, R., Fractional integration in Orlicz spaces, Proc. Amer. Math. Soc., 59, 1, 99-106 (1976) · Zbl 0347.46027
[35] Sonine, N., Sur la généralisation d’une formule d’Abel, Acta Math., 4, 1, 171-176 (1884) · JFM 16.0354.01
[36] Tarasov, V. E., Remark to history of fractional derivatives on complex plane: Sonine-Letnikov and Nishimoto derivatives, Fract. Differ. Calc., 6, 1, 147-149 (2016) · Zbl 1424.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.