×

The discrete-time geometric maximum principle. (English) Zbl 1420.49028

Summary: We establish a variety of results extending the well-known Pontryagin maximum principle of optimal control to discrete-time optimal control problems posed on smooth manifolds. These results are organized around a new theorem on critical and approximate critical points for discrete-time geometric control systems. We show that this theorem can be used to derive Lie group variational integrators in Hamiltonian form; to establish a maximum principle for control problems in the absence of state constraints; and to provide sufficient conditions for exact penalization techniques in the presence of state or mixed constraints. Exact penalization techniques are used to study sensitivity of the optimal value function to constraint perturbations and to prove necessary conditions for optimality, including in the form of a maximum principle, for discrete-time geometric control problems with state or mixed constraints.

MSC:

49K21 Optimality conditions for problems involving relations other than differential equations
49K40 Sensitivity, stability, well-posedness
90C30 Nonlinear programming

References:

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2007. · Zbl 1147.65043
[2] A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin Heidelberg, Germany, 2004. · Zbl 1062.93001
[3] M. Assif, D. Chatterjee, and R. N. Banavar, A simple proof of the discrete time geometric Pontryagin maximum principle, preprint, , 2018, https://arxiv.org/abs/1807.00698.
[4] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Basel, Switzerland, 2009. · Zbl 1168.49014
[5] D. Azagra and J. Ferrera, Applications of proximal calculus to fixed point theory on Riemannian manifolds, Nonlinear Anal. Theory Methods Appl., 67 (2007), pp. 154-174. · Zbl 1131.58006
[6] M. Barbero-Lin͂án and M. C. Mun͂oz-Lecanda, Geometric approach to Pontryagin’s maximum principle, Acta Appl. Math., 108 (2009), pp. 429-485. · Zbl 1242.49045
[7] A. M. Bloch, Nonholonomic Mechanics and Control, Springer-Verlag, New York, NY, 2003. · Zbl 1045.70001
[8] A. I. Bobenko and Y. B. Suris, Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semidirect products, Lett. Math. Phys., 49 (1999), pp. 79-93. · Zbl 0965.70025
[9] V. G. Boltyanskii, Optimal Control of Discrete Systems, John Wiley & Sons, New York, NY, 1978. · Zbl 0397.49001
[10] J. Borwein and Q. J. Zhu, Techniques of Variational Analysis, CMS Books in Mathematics, Springer-Verlag, New York, NY, 2005. · Zbl 1076.49001
[11] L. Bourdin and E. Trélat, Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales, SIAM J. Control Optim., 51 (2013), pp. 3781-3813. · Zbl 1282.49016
[12] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, Springer-Verlag, New York, NY, 2005. · Zbl 1066.70002
[13] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, NY, 1983. (Reprinted as vol. 5 of Classics in Applied Mathematics, SIAM, Philadelphia, PA, 1990). · Zbl 0582.49001
[14] F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Springer-Verlag, London, United Kingdom, 2013. · Zbl 1277.49001
[15] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, NY, 1998. · Zbl 1047.49500
[16] E. De Giorgi, A. Marino, and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68 (1980), pp. 180-187 (in Italian). · Zbl 0465.47041
[17] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), pp. 324-353. · Zbl 0286.49015
[18] O. Güler, Foundations of Optimization, Springer-Verlag, New York, NY, 2010. · Zbl 1220.90001
[19] R. Gupta, U. V. Kalabić, S. Di Cairano, A. M. Bloch, and I. V. Kolmanovsky, Constrained spacecraft attitude control on SO(3) using fast nonlinear model predictive control, in Proceedings of American Control Conference, 2015, pp. 2980-2986.
[20] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, Lie-group methods, Acta Numerica 2000, 9 (2000), pp. 215-365. · Zbl 1064.65147
[21] V. Jurdjevic, Geometric Control Theory, Cambridge University Press, Cambridge, United Kingdom, 1997. · Zbl 0940.93005
[22] U. V. Kalabić, R. Gupta, S. Di Cairano, A. M. Bloch, and I. V. Kolmanovsky, MPC on manifolds with an application to the control of spacecraft attitude on SO(3), Automatica, 76 (2017), pp. 293-300. · Zbl 1352.93035
[23] R. J. Kipka and Y. S. Ledyaev, Optimal control on manifolds: optimality conditions via nonsmooth analysis, Commun. Appl. Anal., 18 (2014), pp. 563-590. · Zbl 1297.49082
[24] R. J. Kipka and Y. S. Ledyaev, Pontryagin maximum principle for control systems on infinite dimensional manifolds, Set-Valued Variational Anal., 23 (2015), pp. 133-147. · Zbl 1312.49023
[25] M. B. Kobilarov, M. Desbrun, J. E. Marsden, and G. S. Sukhatme, A discrete geometric optimal control framework for systems with symmetries, in Proceedings of Robotics: Science and Systems, 2007. · Zbl 1448.70012
[26] M. B. Kobilarov and J. E. Marsden, Discrete geometric optimal control on Lie groups, IEEE Trans. Robotics, 27 (2011), pp. 641-655.
[27] Y. S. Ledyaev and Q. J. Zhu, Nonsmooth analysis on smooth manifolds, Trans. Amer. Math. Soc., 359 (2007), pp. 3687-3732. · Zbl 1157.49021
[28] T. Lee, N. H. McClamroch, and M. Leok, A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum, in Proceedings of Conference on Control Applications, 2005, pp. 962-967.
[29] J. E. Marsden, S. Pekarsky, and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), pp. 1647-1662. · Zbl 0978.37045
[30] J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), pp. 357-514. · Zbl 1123.37327
[31] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, Springer-Verlag, Berlin Heidelberg, Germany, 2006.
[32] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation II: Applications, Springer-Verlag, Berlin Heidelberg, Germany, 2006.
[33] B. S. Mordukhovich and I. Shvartsman, The approximate maximum principle in constrained optimal control, SIAM J. Control Optim., 43 (2004), pp. 1037-1062. · Zbl 1080.49017
[34] J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun. Math. Phys., 139 (1991), pp. 217-243. · Zbl 0754.58017
[35] H. Munthe-Kaas, High order Runge-Kutta methods on manifolds, Appl. Numer. Math., 29 (1999), pp. 115-127. · Zbl 0934.65077
[36] T. Ohsawa, A. M. Bloch, and M. Leok, Discrete Hamilton-Jacobi theory, SIAM J. Control Optim., 49 (2011), pp. 1829-1856. · Zbl 1286.70025
[37] J.-P. Penot, Calculus without Derivatives, Springer-Verlag, New York, NY, 2013. · Zbl 1264.49014
[38] K. S. Phogat, D. Chatterjee, and R. N. Banavar, Discrete-time optimal attitude control of spacecraft with momentum and control constraints, J. Guidance Control Dynamics, 41 (2018), pp. 199-211.
[39] K. S. Phogat, D. Chatterjee, and R. N. Banavar, A discrete-time Pontryagin maximum principle on matrix Lie groups, Automatica, 97 (2018), pp. 376-391. · Zbl 1406.49022
[40] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, NY, 1962. · Zbl 0102.32001
[41] B. N. Pshenichnyj, Necessary conditions for an extremum, penalty functions and regularity, in Perspectives in Control Theory, B. Jakubczyk, K. Malanowski, and W. Respondek, eds., Birkhäuser, Boston, MA, 1990, pp. 286-296. · Zbl 0715.49021
[42] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin Heidelberg, Germany, 1998. · Zbl 0888.49001
[43] W. Schirotzek, Nonsmooth Analysis, Springer-Verlag, Berlin Heidelberg, Germany, 2007. · Zbl 1120.49001
[44] A. Subbotin, On a property of the subdifferential, Matematicheskii Sbornik, 182 (1991), pp. 1315-1330 (in Russian). · Zbl 0748.49003
[45] H. J. Sussmann, An introduction to the coordinate-free maximum principle, in Geometry of Feedback and Optimal Control, B. Jakubczyk and W. Respondek, eds., Marcel Dekker, New York, NY, 1997, pp. 463-557. · Zbl 0925.93135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.