×

Pontryagin maximum principle for control systems on infinite dimensional manifolds. (English) Zbl 1312.49023

Summary: We discuss a mathematical framework for the analysis of optimal control problems on infinite-dimensional manifolds. Such problems arise in the study of dynamic optimization for partial differential equations with some symmetry. We develop nonsmooth analysis methods and Lagrangian charts techniques which can be used for the study of global variations of optimal trajectories of such control systems and the derivation of a maximum principle for them.

MSC:

49K27 Optimality conditions for problems in abstract spaces
49K15 Optimality conditions for problems involving ordinary differential equations
49Q99 Manifolds and measure-geometric topics
58E25 Applications of variational problems to control theory

References:

[1] Adams, R.: Sobolev Spaces. Academic Press, New York (1975) · Zbl 0314.46030
[2] Berkovitz, L.: Optimal Control Theory. Springer-Verlag, New York (1974) · Zbl 0295.49001 · doi:10.1007/978-1-4757-6097-2
[3] Bonic, R., Frampton, J.: Smooth functions on banach manifolds. J. Math. Mech 15, 877 (1966) · Zbl 0143.35202
[4] Borwein, J.: Stability and regular points of inequality systems. J. Optimi. Theory Appl. 48, 9-52 (1986) · Zbl 0557.49020
[5] Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) · Zbl 0582.49001
[6] Clarke, F., Ledyaev, Yu., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998) · Zbl 1047.49500
[7] Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control. Springer, New York (2013) · Zbl 1277.49001 · doi:10.1007/978-1-4471-4820-3
[8] Clarke, F., Ledyaev, Yu.: Mean value inequalities in Hilbert space. Trans. Amer. Math. Soc 344, 307-324 (1994) · Zbl 0803.49018 · doi:10.1090/S0002-9947-1994-1227093-8
[9] Clarke, F., Ledyaev, Yu., Stern, R., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998) · Zbl 1047.49500
[10] Diestel, J., Uhl, J.: Vector Measures. American Mathematical Society, Providence (1977) · Zbl 0369.46039 · doi:10.1090/surv/015
[11] Ekeland, I.: On the variational principle. J. Math. Anal. Appl 47, 324-353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[12] Fattorini, H.: Infinite Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge (1999) · Zbl 0931.49001 · doi:10.1017/CBO9780511574795
[13] Gamkrelidze, R.: Principle of Optimal Control Theory. Plenum Press, New York (1978) · Zbl 0401.49001 · doi:10.1007/978-1-4684-7398-8
[14] Kipka, R., Ledyaev, Yu.: Extension of the Chronological Calculus for Dynamical Systems on Manifolds. Submitted to the Journal of Differential Equations (2014) · Zbl 1345.58006
[15] Kipka, R., Ledyaev, Yu.: Optimal control on manifolds: optimality conditions via nonsmooth analysis. Commun. Appl. Anal 18, 563-590 (2014) · Zbl 1297.49082
[16] Krastanov, M., Ribarska, N., Tsachev, T.s.: A Pontryagin maximum principle for infinite-dimensional problems. SIAM J. Control Optim 49, 2155-2182 (2011) · Zbl 1234.49020 · doi:10.1137/100799009
[17] Lang, S.: Fundamentals of Differential Geometry. Springer-Verlag, New York (1999) · Zbl 0932.53001 · doi:10.1007/978-1-4612-0541-8
[18] Ledyaev, Yu.: Extremal Problems in Differential Game Theory. Steklov Institute of Mathematics, Moscow (1990) · Zbl 0701.90104
[19] Ledyaev, Yu., Zhu, Q.: Nonsmooth analysis on smooth manifolds. Trans. Amer. Math. Soc 359, 3687-3732 (2007) · Zbl 1157.49021 · doi:10.1090/S0002-9947-07-04075-5
[20] Mordukhovich, B.: Variational Analysis and Generalized Differentiation I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330. Springer-Verlag, Berlin (2006)
[21] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. American Mathematical Society, Providence (2010) · Zbl 1195.49001
[22] Warga, J.: Relaxed variational problems. J. Math. Anal. Appl 4, 111-128 (1962) · Zbl 0102.31801 · doi:10.1016/0022-247X(62)90033-1
[23] Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York (1972) · Zbl 0253.49001
[24] Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie Classe III (30), 212-234 (1937) · Zbl 0019.21901
[25] Zhu, Q.: Clarke-Ledyaev mean value inequalities in smooth banach spaces. Nonlinear Anal. Theory Methods Appl 32, 315-324 (1998) · Zbl 0952.49014 · doi:10.1016/S0362-546X(97)00488-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.