×

MPC on manifolds with an application to the control of spacecraft attitude on SO(3). (English) Zbl 1352.93035

Summary: We develop a Model Predictive Control (MPC) design for systems with discrete-time dynamics evolving on smooth manifolds. We show that the properties of conventional MPC for dynamics evolving on \(\mathbb{R}^n\) are preserved and we establish a design procedure for achieving similar properties. We also demonstrate that for discrete-time dynamics on manifolds with Euler characteristic not equal to 1, there do not exist globally stabilizing, continuous control laws. The MPC law is able to achieve global asymptotic stability on these manifolds, because the MPC law may be discontinuous. We apply the method to spacecraft attitude control, where the spacecraft attitude evolves on the Lie group \(\operatorname{SO}(3)\) and for which a continuous globally stabilizing control law does not exist. In this case, the MPC law is discontinuous and achieves global stability.

MSC:

93B27 Geometric methods
93B40 Computational methods in systems theory (MSC2010)
70P05 Variable mass, rockets
93C55 Discrete-time control/observation systems

Software:

RICPAC

References:

[1] Arnold, W. F.; Laub, A. J., Generalized eigenproblem algorithms and software for algebraic Riccati equations, Proceedings of the IEEE, 72, 12, 1746-1754 (1984)
[2] Bhat, S. P.; Bernstein, D. S., A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon, Systems & Control Letters, 39, 1, 63-70 (2000) · Zbl 0986.93063
[3] Bullo, F.; Lewis, A. D., Geometric control of mechanical systems (2005), Springer: Springer New York · Zbl 1066.70002
[4] Cardoso, J. R.; Leite, F. S., The Moser-Veselov equation, Linear Algebra and its Applications, 360, 237-248 (2003) · Zbl 1020.15016
[5] Granas, A.; Dugundji, J., Fixed point theory (2003), Springer: Springer New York · Zbl 1025.47002
[6] Gros, S., Zanon, M., Vukov, M., & Diehl, M. (2012). Nonlinear MPC and MHE for mechanical multi-body systems with application to fast tethered airplanes. In Proc. nonlin. model predictive control; Gros, S., Zanon, M., Vukov, M., & Diehl, M. (2012). Nonlinear MPC and MHE for mechanical multi-body systems with application to fast tethered airplanes. In Proc. nonlin. model predictive control
[7] Guillemin, V.; Pollack, A., Differential topology (1974), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0361.57001
[8] Hairer, E.; Lubich, C.; Wanner, G., Geometric numerical integration (2006), Springer-Verlag: Springer-Verlag Berlin, Germany · Zbl 1094.65125
[9] Iserles, A.; Munthe-Kass, H.; Nørsett, S.; Zanna, A., Lie-group methods, Acta Numerica, 9, 215-365 (2000) · Zbl 1064.65147
[10] Kalabić, U.V., Gupta, R., Di Cairano, S., Bloch, A.M., & Kolmanovsky, I.V. (2016). MPC on manifolds with an application to the control of spacecraft attitude on SO(3), arXiv:1509.08567v3; Kalabić, U.V., Gupta, R., Di Cairano, S., Bloch, A.M., & Kolmanovsky, I.V. (2016). MPC on manifolds with an application to the control of spacecraft attitude on SO(3), arXiv:1509.08567v3
[11] Kalabić, U., Gupta, R., Di Cairano, S., Bloch, A., & Kolmanovsky, I. (2014). Constrained spacecraft attitude control on SO(3) using reference governors and nonlinear model predictive control. In Proc. american control conf.; Kalabić, U., Gupta, R., Di Cairano, S., Bloch, A., & Kolmanovsky, I. (2014). Constrained spacecraft attitude control on SO(3) using reference governors and nonlinear model predictive control. In Proc. american control conf.
[12] Lee, J. M., Introduction to smooth manifolds (2003), Springer-Verlag: Springer-Verlag New York
[13] Lee, T., Computational geometric mechanics and control of rigid bodies (2008), University of Michigan: University of Michigan Ann Arbor, Ph.D. thesis
[14] Lee, T.; Leok, M.; McClamroch, N. H., Optimal attitude control of a rigid body using geometrically exact computations on SO(3), Journal of Dynamical and Control System, 14, 4, 465-487 (2008) · Zbl 1203.70044
[15] Lee, T., McClamroch, N.H., & Leok, M. (2005). A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum. In Proc. IEEE int. conf. control applicat.; Lee, T., McClamroch, N.H., & Leok, M. (2005). A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum. In Proc. IEEE int. conf. control applicat.
[16] Lin, W.; Byrnes, C. I., Design of discrete-time nonlinear control systems via smooth feedback, IEEE Transactions on Automatic Control, 39, 11, 2340-2346 (1994) · Zbl 0825.93424
[17] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numerica, 10, 357-514 (2001) · Zbl 1123.37327
[18] Meadows, E. S.; Henson, M. A.; Eaton, J. W.; Rawlings, J. B., Receding horizon control and discontinuous state feedback stabilization, International Journal of Control, 62, 5, 1217-1229 (1995) · Zbl 0841.93066
[19] Milnor, J. M., Topology from the differential viewpoint (1997), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1025.57002
[20] Moser, J.; Veselov, A., Discrete versions of some classical integrable systems and factorization of matrix polynomials, Communications in Mathematical Physics, 139, 2, 217-243 (1991) · Zbl 0754.58017
[21] Munthe-Kass, H., High order Runge-Kutta methods on manifolds, Applied Numerical Mathematics, 29, 1, 115-127 (1999) · Zbl 0934.65077
[22] Nagy, Z., Findeisen, R., Diehl, M., Allgöwer, F., Georg Bock, H., & Agachi, S. et al. (2000). Real-time feasibility of nonlinear predictive control for large scale processes - a case study. In Proc. american control conf.; Nagy, Z., Findeisen, R., Diehl, M., Allgöwer, F., Georg Bock, H., & Agachi, S. et al. (2000). Real-time feasibility of nonlinear predictive control for large scale processes - a case study. In Proc. american control conf.
[23] Rawlings, J. B.; Mayne, D. Q., Model predictive control: theory and design (2009), Nob Hill: Nob Hill Madison, WI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.