×

Multiple positive solutions for a class of \(p\)-Laplacian Neumann problems without growth conditions. (English) Zbl 1419.35072

Summary: For \(1 < p < \infty\), we consider the following problem \[-\Delta_pu = f(u), \quad u > 0 \quad \mathrm{in} \quad \Omega, \quad \partial_{\nu}u = 0 \quad \mathrm{on} \quad \partial\Omega,\] where \(\Omega \subset \mathbb{R}^N\) is either a ball or an annulus. The nonlinearity \(f\) is possibly supercritical in the sense of Sobolev embeddings; in particular our assumptions allow to include the prototype nonlinearity \(f(s) = -s^{p-1} + s^{q-1}\) for every \(q > p\). We use the shooting method to get existence and multiplicity of non-constant radial solutions. With the same technique, we also detect the oscillatory behavior of the solutions around the constant solution \(u \equiv 1\). In particular, we prove a conjecture proposed in [D. Bonheure et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29, No. 4, 573–588 (2012; Zbl 1248.35079)], that is to say, if \(p = 2\) and \(f' (1) > \lambda^{\mathrm{rad}}_{k + 1}\), with \(\lambda^{\mathrm{rad}}_{k + 1}\) the \((k + 1)\)-th radial eigenvalue of the Neumann Laplacian, there exists a radial solution of the problem having exactly \(k\) intersections with \(u \equiv 1\), for a large class of nonlinearities.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35A24 Methods of ordinary differential equations applied to PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B09 Positive solutions to PDEs

Citations:

Zbl 1248.35079

References:

[1] Adimurthi and S.L. Yadava, Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents. Arch. Rational Mech. Anal. 115 (1991) 275-296 · Zbl 0839.35041 · doi:10.1007/BF00380771
[2] Adimurthi and S.L. Yadava, Nonexistence of positive radial solutions of a quasilinear Neumann problem with a critical Sobolev exponent. Arch. Rational Mech. Anal. 139 (1997) 239-253 · Zbl 0910.35050 · doi:10.1007/s002050050052
[3] V. Barutello, S. Secchi and E. Serra, A note on the radial solutions for the supercritical Hénon equation. J. Math. Anal. Appl. 341 (2008) 720-728 · Zbl 1135.35031
[4] D. Bonheure, J.-B. Casteras and B. Noris, Layered solutions with unbounded mass for the Keller-Segel equation. J. Fixed Point Theory App. 19 (2017) 529-558 · Zbl 1375.35096 · doi:10.1007/s11784-016-0364-2
[5] D. Bonheure, J.-B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system. Calc. Var. 56 (2017) 56-74 · Zbl 1375.35097 · doi:10.1007/s00526-017-1163-3
[6] D. Bonheure, M. Grossi, B. Noris and S. Terracini, Multi-layer radial solutions for a supercritical Neumann problem. J. Differ. Equ. 261 (2016) 455-504 · Zbl 1341.35061
[7] D. Bonheure, Ch. Grumiau and Ch. Troestler, Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions. Nonlin. Anal. 147 (2016) 236-273 · Zbl 1354.35041 · doi:10.1016/j.na.2016.09.010
[8] D. Bonheure, B. Noris and T. Weth, Increasing radial solutions for Neumann problems without growth restrictions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 573-588 · Zbl 1248.35079 · doi:10.1016/j.anihpc.2012.02.002
[9] D. Bonheure and E. Serra, Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth. NoDEA Nonlin. Differ. Equ. Appl. 18 (2011) 217-235 · Zbl 1216.35048 · doi:10.1007/s00030-010-0092-z
[10] D. Bonheure, E. Serra and P. Tilli, Radial positive solutions of elliptic systems with Neumann boundary conditions. J. Funct. Anal. 265 (2013) 375-398 · Zbl 1285.35030
[11] A. Boscaggin, F. Colasuonno and B. Noris, A priori bounds and multiplicity of positive solutions for p-Laplacian Neumann problems with sub-critical growth. Preprint (2018) · Zbl 1436.35204
[12] A. Boscaggin and F. Zanolin, Pairs of nodal solutions for a class of nonlinear problems with one-sided growth conditions. Adv. Nonlin. Study 13 (2013) 13-53 · Zbl 1286.34031 · doi:10.1515/ans-2013-0103
[13] H. Brezis, Nonlinear elliptic equations involving the critical Sobolev exponent—survey and perspectives. In Directions in partial differential equations (Madison, WI, 1985). Vol. 54 of Publ. Math. Res. Center Univ. Wisconsin. Academic Press, Boston, MA (1987) 17-36 · Zbl 0699.35075
[14] C. Budd, M.C. Knaap and L.A. Peletier, Asymptotic behavior of solutions of elliptic equations with critical exponents and Neumann boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 117 (1991) 225-250 · Zbl 0733.35038 · doi:10.1017/S0308210500024707
[15] F. Colasuonno, A p-Laplacian Neumann problem with a possibly supercritical nonlinearity. Rend. Sem. Mat. Univ. Pol. Torino 74 (2016) 113-122 · Zbl 1440.35176
[16] F. Colasuonno and B. Noris, A p-Laplacian supercritical Neumann problem. Discrete Contin. Dyn. Syst. 37 (2017) 3025-3057 · Zbl 1360.35077 · doi:10.3934/dcds.2017130
[17] F. Colasuonno and B. Noris, Radial positive solutions for p-Laplacian supercritical Neumann problems. Preprint (2017) · Zbl 1439.35178
[18] C. Cowan and A. Moameni, A new variational principle, convexity and supercritical Neumann problems. Trans. Amer. Math. Soc. (2017) · Zbl 1421.35147
[19] M. del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u′|\(^{}\) p−2u′)′ + f(t, u) = 0, u(0) = u(T) = 0, p > 1.. J. Differ. Equ. 80 (1989) 1-13 · Zbl 0708.34019
[20] M. Del Pino, M. Musso, C. Román and J. Wei, Interior bubbling solutions for the critical Lin-Ni-Takagi problem in dimension 3. Preprint (2015) · Zbl 1420.35104
[21] M. del Pino, A. Pistoia and G. Vaira, Large mass boundary condensation patterns in the stationary Keller-Segel system. J. Differ. Equ. 261 (2016) 3414-3462 · Zbl 1345.35039
[22] M.A. del Pino, R.F. Manásevich and A.E. Murúa, Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE. Nonlin. Anal. 18 (1992) 79-92 · Zbl 0761.34032 · doi:10.1016/0362-546X(92)90048-J
[23] E.J. Doedel and B.E. Oldeman, Auto-07p: Continuation and bifurcation software for ordinary differential equations. Concordia University. Available at: (2012)
[24] C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1994) 207-227, 1992 · Zbl 0824.34026
[25] B. Franchi, E. Lanconelli and J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in R \(^{}\) n. Adv. Math. 118 (1996) 177-243 · Zbl 0853.35035 · doi:10.1006/aima.1996.0021
[26] M. Grossi and B. Noris, Positive constrained minimizers for supercritical problems in the ball. Proc. Amer. Math. Soc. 140 (2012) 2141-2154 · Zbl 1261.35052 · doi:10.1090/S0002-9939-2011-11133-X
[27] J.K. Hale, Ordinary differential equations. Pure Appl. Math. Vol. XXI. Wiley-Interscience, New York-London-Sydney (1969) · Zbl 0186.40901
[28] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonl. Anal. 12 (1988) 1203-1219 · Zbl 0675.35042 · doi:10.1016/0362-546X(88)90053-3
[29] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72 (1988) 1-27 · Zbl 0676.35030
[30] Ch.Sh. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem. In Calcul. Variat. Partial Differ. Eqs. Trento (1986). Vol. 1340 of Lect. Notes Math. Springer, Berlin (1988) 160-174 · Zbl 0704.35050
[31] Y. Lu, T. Chen and R. Ma, On the Bonheure-Noris-Weth conjecture in the case of linearly bounded nonlinearities. Discrete Contin. Dyn. Syst. Ser. B 21 (2016) 2649-2662 · Zbl 1351.35057 · doi:10.3934/dcdsb.2016066
[32] R. Ma, T. Chen and H. Wang, Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions. J. Math. Anal. Appl. 443 (2016) 542-565 · Zbl 1344.35028
[33] R. Ma, H. Gao and T. Chen, Radial positive solutions for Neumann problems without growth restrictions. Complex Var. Elliptic Equ. 62 (2017) 848-861 · Zbl 1376.35031 · doi:10.1080/17476933.2016.1251420
[34] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains. Geom. Funct. Anal. 15 (2005) 1162-1222 · Zbl 1087.35010 · doi:10.1007/s00039-005-0542-7
[35] A. Malchiodi, W.-M. Ni and J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 (2005)143-163 · Zbl 1207.35141 · doi:10.1016/j.anihpc.2004.05.003
[36] A. Malchiodi, Solutions concentrating at curves for some singularly perturbed elliptic problems. C.R. Math. Acad. Sci. Paris 338 (2004) 775-780 · Zbl 1081.35044 · doi:10.1016/j.crma.2004.03.023
[37] A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem. Commun. Pure Appl. Math. 55 (2002) 1507-1568 · Zbl 1124.35305
[38] A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem. Duke Math. J. 124 (2004) 105-143 · Zbl 1065.35037 · doi:10.1215/S0012-7094-04-12414-5
[39] R. Manásevich, F.I. Njoku and F. Zanolin, Positive solutions for the one-dimensional p-Laplacian. Differ. Integral Equ. 8 (1995) 213-222 · Zbl 0815.34015
[40] E. Montefusco and P. Pucci, Existence of radial ground states for quasilinear elliptic equations. Adv. Differ. Equ. 6 (2001) 959-986 · Zbl 1140.35426
[41] A. Pistoia and G. Vaira, Steady states with unbounded mass of the Keller-Segel system. Proc. Roy. Soc. Edinburgh Sect. A 145 (2015) 203-222 · Zbl 1321.35027 · doi:10.1017/S0308210513000619
[42] C. Rebelo and F. Zanolin, On the existence and multiplicity of branches of nodal solutions for a class of parameter-dependent Sturm-Liouville problems via the shooting map. Differ. Integral Equ. 13 (2000) 1473-1502 · Zbl 0986.34019
[43] W. Reichel and W. Walter, Radial solutions of equations and inequalities involving the p-Laplacian. J. Inequal. Appl. 1 (1997) 47-71 · Zbl 0883.34024
[44] W. Reichel and W. Walter, Sturm-Liouville type problems for the p-Laplacian under asymptotic non-resonance conditions. J. Differ. Equ. 156 (1999) 50-70 · Zbl 0931.34059
[45] S. Secchi, Increasing variational solutions for a nonlinear p-Laplace equation without growth conditions. Ann. Mat. Pura Appl. 191 (2012) 469-485 · Zbl 1312.35139 · doi:10.1007/s10231-011-0191-4
[46] E. Serra and P. Tilli, Monotonicity constraints and supercritical Neumann problems. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28 (2011) 63-74 · Zbl 1209.35044 · doi:10.1016/j.anihpc.2010.10.003
[47] L. Wang, J. Wei and Sh. Yan, A Neumann problem with critical exponent in nonconvex domains and Lin-Ni’s conjecture. Trans. Amer. Math. Soc. 362 (2010) 4581-4615 · Zbl 1204.35093 · doi:10.1090/S0002-9947-10-04955-X
[48] P. Yan and M. Zhang, Rotation number, periodic Fučik spectrum and multiple periodic solutions. Commun. Contemp. Math. 12 (2010) 437-455 · Zbl 1202.34037 · doi:10.1142/S0219199710003877
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.