×

Solutions concentrating at curves for some singularly perturbed elliptic problems. (English. Abridged French version) Zbl 1081.35044

Summary: We study positive solutions of the equation \(-\varepsilon^2 \Delta u+u=u^p\), where \(p>1\) and \(\varepsilon >0\) is small, with Neumann boundary conditions in a three-dimensional domain \(\varOmega\). We prove the existence of solutions concentrating along some closed curve on \(\partial \varOmega\).

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35B25 Singular perturbations in context of PDEs

References:

[1] Ambrosetti, A.; Malchiodi, A.; Ni, W.-M., Commun. Math. Phys., 235, 427-466 (2003) · Zbl 1072.35019
[2] A. Ambrosetti, A. Malchiodi, W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part II, Indiana Univ. Math. J., in press; A. Ambrosetti, A. Malchiodi, W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part II, Indiana Univ. Math. J., in press · Zbl 1081.35008
[3] S. Cingolani, A. Pistoia, Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys., in press; S. Cingolani, A. Pistoia, Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys., in press · Zbl 1120.35308
[4] E.N. Dancer, Stable and finite Morse index solutions on \(R^n\); E.N. Dancer, Stable and finite Morse index solutions on \(R^n\) · Zbl 1183.35125
[5] D’Aprile, T., Differential Integral Equations, 16, 3, 349-384 (2003) · Zbl 1031.35130
[6] Del Pino, M.; Felmer, P., J. Funct. Anal., 149, 245-265 (1997) · Zbl 0887.35058
[7] Gui, C.; Wei, J., Canad. J. Math., 52, 3, 522-538 (2000) · Zbl 0949.35052
[8] Kato, T., Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., vol. 132 (1976), Springer-Verlag: Springer-Verlag Berlin · Zbl 0342.47009
[9] Li, Y. Y.; Nirenberg, L., Comm. Pure Appl. Math., 51, 1445-1490 (1998) · Zbl 0933.35083
[10] Lin, C.-S.; Ni, W.-M.; Takagi, I., J. Differential Equations, 72, 1-27 (1988) · Zbl 0676.35030
[11] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Preprint; A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Preprint · Zbl 1087.35010
[12] Malchiodi, A.; Montenegro, M., Comm. Pure Appl. Math., 15, 1507-1568 (2002) · Zbl 1124.35305
[13] A. Malchiodi, M. Montenegro, Multidimensional boundary-layers for a singularly perturbed Neumann problem, Duke Univ. Math. J., in press; A. Malchiodi, M. Montenegro, Multidimensional boundary-layers for a singularly perturbed Neumann problem, Duke Univ. Math. J., in press · Zbl 1065.35037
[14] A. Malchiodi, W.-M. Ni, J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball, Preprint; A. Malchiodi, W.-M. Ni, J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball, Preprint · Zbl 1207.35141
[15] R. Mazzeo, F. Pacard, Foliations by constant mean curvature tubes, Preprint; R. Mazzeo, F. Pacard, Foliations by constant mean curvature tubes, Preprint · Zbl 1096.53035
[16] Ni, W.-M., Notices Amer. Math. Soc., 45, 1, 9-18 (1998) · Zbl 0917.35047
[17] Ni, W.-M.; Takagi, I., Comm. Pure Appl. Math., 41, 819-851 (1991) · Zbl 0754.35042
[18] Ni, W.-M.; Takagi, I., Duke Math. J., 70, 247-281 (1993) · Zbl 0796.35056
[19] Shi, J., Trans. Amer. Math. Soc., 354, 8, 3117-3154 (2002) · Zbl 0992.35031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.