×

Multi-layer radial solutions for a supercritical Neumann problem. (English) Zbl 1341.35061

The paper under review deals with the Neumann problem
\[ \begin{cases} -\Delta u+u=u^p & \text{in}\;B_1,\\ u>0, & \\ \partial_\nu u=0 & \text{on}\;\partial B_1, \end{cases} \]
where \(B_1\) is the unit ball in \(\mathbb{R}^N\) with \(N\geq3\) and \(p>1\).
The authors prove existence of multiple layer solutions as \(p\to\infty.\) These are radial solutions whose Laplacians weakly converge to measures concentrating at interior spheres, with a simple reflection rule.
The machinery employed rely on a gluing technique, using a variant of the Nehari method, adapted to deal with Neumann problems instead of the standard Dirichlet ones.

MSC:

35J61 Semilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations

References:

[1] Ambrosetti, A.; Malchiodi, A.; Ni, W.-M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I, Comm. Math. Phys., 235, 3, 427-466 (2003) · Zbl 1072.35019
[2] Ambrosetti, A.; Malchiodi, A.; Ni, W.-M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. II, Indiana Univ. Math. J., 53, 2, 297-329 (2004) · Zbl 1081.35008
[3] Bandle, C.; Wei, J., Multiple clustered layer solutions for semilinear elliptic problems on \(S^n\), Comm. Partial Differential Equations, 33, 4-6, 613-635 (2008) · Zbl 1196.35107
[4] Bonheure, D.; Noris, B.; Weth, T., Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29, 4, 573-588 (2012) · Zbl 1248.35079
[5] Bonheure, D.; Serra, E., Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth, NoDEA Nonlinear Differential Equations Appl., 18, 2, 217-235 (2011) · Zbl 1216.35048
[6] Bonheure, D.; Serra, E.; Tilli, P., Radial positive solutions of elliptic systems with Neumann boundary conditions, J. Funct. Anal., 265, 3, 375-398 (2013) · Zbl 1285.35030
[7] Brezis, H.; Nirenberg, L., \(H^1\) versus \(C^1\) local minimizers, C. R. Acad. Sci., Sér. 1 Math., 317, 5, 465-472 (1993) · Zbl 0803.35029
[8] Catrina, F., A note on a result of M. Grossi, Proc. Amer. Math. Soc., 137, 11, 3717-3724 (2009) · Zbl 1179.35142
[9] del Pino, M.; Felmer, P. L., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, 1, 245-265 (1997) · Zbl 0887.35058
[10] Felmer, P.; Martínez, S.; Tanaka, K., Highly oscillatory behavior of the activator in the Gierer and Meinhardt system, Math. Ann., 340, 4, 749-773 (2008) · Zbl 1173.37010
[11] Gladiali, F.; Grossi, M., Singular limit of radial solutions in an annulus, Asymptot. Anal., 55, 1-2, 73-83 (2007) · Zbl 1132.35377
[12] Grossi, M., Asymptotic behavior of the Kazdan-Warner solution in the annulus, J. Differential Equations, 223, 1, 96-111 (2006) · Zbl 1170.35420
[13] Grossi, M.; Noris, B., Positive constrained minimizers for supercritical problems in the ball, Proc. Amer. Math. Soc., 140, 6, 2141-2154 (2012) · Zbl 1261.35052
[14] Malchiodi, A.; Montenegro, M., Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., 55, 12, 1507-1568 (2002) · Zbl 1124.35305
[15] Malchiodi, A.; Ni, W.-M.; Wei, J., Multiple clustered layer solutions for semilinear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 2, 143-163 (2005) · Zbl 1207.35141
[16] Ni, W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45, 1, 9-18 (1998) · Zbl 0917.35047
[17] Ortega, R.; Verzini, G., A variational method for the existence of bounded solutions of a sublinear forced oscillator, Proc. Lond. Math. Soc. (3), 88, 775-795 (2004) · Zbl 1072.34038
[18] Pistoia, A.; Vaira, G., Steady states with unbounded mass of the Keller-Segel system, Proc. Roy. Soc. Edinburgh Sect. A, 145, 1, 203-222 (2015) · Zbl 1321.35027
[19] Pohožaev, S. I., On the eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\), Dokl. Akad. Nauk SSSR, 165, 36-39 (1965) · Zbl 0141.30202
[20] Ruf, B.; Srikanth, P. N., Singularly perturbed elliptic equations with solutions concentrating on a 1-dimensional orbit, J. Eur. Math. Soc. (JEMS), 12, 2, 413-427 (2010) · Zbl 1189.35103
[21] Serra, E.; Tilli, P., Monotonicity constraints and supercritical Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 1, 63-74 (2011) · Zbl 1209.35044
[22] Terracini, S.; Verzini, G., Oscillating solutions to second-order ODEs with indefinite superlinear nonlinearities, Nonlinearity, 13, 5, 1501-1514 (2000) · Zbl 0979.34028
[23] Terracini, S.; Verzini, G., Solutions of prescribed number of zeroes to a class of superlinear ODE’s systems, NoDEA Nonlinear Differential Equations Appl., 8, 3, 323-341 (2001) · Zbl 0988.34013
[24] Wei, J.; Yan, S., Solutions with interior bubble and boundary layer for an elliptic Neumann problem with critical nonlinearity, C. R. Math. Acad. Sci. Paris, 343, 5, 311-316 (2006) · Zbl 1217.35068
[25] Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24 (1996), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.