×

Realizing nonholonomic dynamics as limit of friction forces. (English) Zbl 1404.37074

Author’s abstract: The classical question whether nonholonomic dynamics is realized as limit of friction forces was first posed by Carathéodory. It is known that, indeed, when friction forces are scaled to infinity, then nonholonomic dynamics is obtained as a singular limit. Our results are twofold. First, we formulate the problem in a differential geometric context. Using modern geometric singular perturbation theory in our proof, we then obtain a sharp statement on the convergence of solutions on infinite time intervals. Secondly, we set up an explicit scheme to approximate systems with large friction by a perturbation of the nonholonomic dynamics. The theory is illustrated in detail by studying analytically and numerically the Chaplygin sleigh as an example. This approximation scheme offers a reduction in dimension and has potential use in applications.

MSC:

37J60 Nonholonomic dynamical systems
70F40 Problems involving a system of particles with friction
70H09 Perturbation theories for problems in Hamiltonian and Lagrangian mechanics

References:

[1] Appell, P., Exemple de mouvement d’un point assujetti à une liaison exprimée par une relation non linéaire entre les composantes de la vitesse, Rend. Circ. Mat. Palermo, 1911, vol. 32, no. 1, pp. 48-50. · JFM 42.0756.01 · doi:10.1007/BF03014784
[2] Arnold, V. I., Ordinary Differential Equations, Berlin: Springer, 2006.
[3] Borisov, A.V., Karavaev, Yu. L., Mamaev, I. S., Erdakova, N.N., Ivanova, T. B., and Tarasov, V.V., Experimental Investigation of the Motion of a Body with an Axisymmetric Base Sliding on a Rough Plane, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 518-541. · Zbl 1343.70017 · doi:10.1134/S1560354715050020
[4] Bloch, A.M., Nonholonomic Mechanics and Control, Interdiscip. Appl. Math., vol. 24, New York: Springer, 2003. · Zbl 1378.74021
[5] Bloch, A. M., Nonholonomic Mechanics, Dissipation and Quantization, 141-152 (2010) · Zbl 1235.70034 · doi:10.1007/978-3-642-16135-3_12
[6] Bloch, A.M., Marsden, J.E., Zenkov, D.V., Quasivelocities and Symmetries in Non-Holonomic Systems, Dyn. Syst., 2009, vol. 24, no. 2, pp. 187-222. · Zbl 1231.37034 · doi:10.1080/14689360802609344
[7] Bloch, A. M. and Rojo, A. G., Quantization of a Nonholonomic System, Phys. Rev. Lett., 2008, vol. 101, no. 3, 030402, 4 pp. · Zbl 1228.81194 · doi:10.1103/PhysRevLett.101.030402
[8] Brendelev, V. N., On the Realization of Constraints in Nonholonomic Mechanics, J. Appl. Math. Mech., 1981, vol. 45, no. 3, pp. 351-355; see also: Prikl. Mat. Mekh., 1981, vol. 45, no. 3, pp. 481-487. · Zbl 0496.70026 · doi:10.1016/0021-8928(81)90065-4
[9] Bou-Rabee, N. M., Marsden, J.E., Romero, L.A., Dissipation-Induced Heteroclinic Orbits in Tippe Tops, SIAM Rev., 2008, vol. 50, no. 2, pp. 325-344. · Zbl 1138.70012 · doi:10.1137/080716177
[10] Carathéodory, C.; Schlitten, Z., No article title, Angew. Math. Mech., 13, 71-76 (1933) · Zbl 0006.37301 · doi:10.1002/zamm.19330130205
[11] Cushman, R., Duistermaat, H., and Sniatycki, J., Geometry of Nonholonomically Constrained Systems, Adv. Ser. Nonlinear Dynam., vol. 26, Hackensack,N.J.: World Sci., 2010. · Zbl 1190.37002
[12] Chaplygin, S.A., On the Theory ofMotion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369-376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303-314. · Zbl 1229.37082 · doi:10.1134/S1560354708040102
[13] de León, M., A Historical Review on Nonholomic Mechanics, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 2012, vol. 106, no. 1, pp. 191-224. · Zbl 1264.37017 · doi:10.1007/s13398-011-0046-2
[14] Eldering, J., Normally Hyperbolic Invariant Manifolds: The Noncompact Case, Atlantis Studies in Dynamical Systems, vol. 2, Paris: Atlantis Press, 2013. · Zbl 1303.37011
[15] Fenichel, N., Persistence and Smoothness of Invariant Manifolds for Flows, Indiana Univ. Math. J., 1971/1972, vol. 21, pp. 193-226. · Zbl 0246.58015 · doi:10.1512/iumj.1972.21.21017
[16] Fenichel, N., Geometric Singular Perturbation Theory for Ordinary Differential Equations, J. Differential Equations, 1979, vol. 31, no. 1, pp. 53-98. · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[17] Fedorov, Yu.N. and García-Naranjo, L.C., The Hydrodynamic Chaplygin Sleigh, J. Phys. A, 2010, vol. 43, no. 43, 434013, 18 pp. · Zbl 1378.74021 · doi:10.1088/1751-8113/43/43/434013
[18] Fufaev, N.A., On the Possibility of Realizing a Nonholonomic Constraint by Means of Viscous Friction Forces, J. Appl. Math. Mech., 1964, vol. 28, no. 3, pp. 630-632; see also: Prikl. Mat. Mekh., 1964, vol. 28, no. 3, pp. 513-515. · Zbl 0151.35801 · doi:10.1016/0021-8928(64)90105-4
[19] Hirsch, M.W., Pugh, C.C., and Shub, M., Invariant Manifolds, Lecture Notes in Math., vol. 583, New York: Springer, 1977. · Zbl 0493.70008
[20] Karapetian, A.V., On Realizing Nonholonomic Constraints by Viscous Friction Forces and Celtic Stones Stability, J. Appl. Math. Mech., 1981, vol. 45, no. 1, pp. 30-36; see also: Prikl. Mat. Mekh., 1981, vol. 45, no. 1, pp. 42-51. · Zbl 0493.70008 · doi:10.1016/0021-8928(81)90006-X
[21] Kobayashi, Sh. and Nomizu, K., Foundations of Differential Geometry: Vol. 1, New York: Wiley, 1996. · Zbl 0175.48504
[22] Kozlov, V.V. and Neishtadt, A. I., Realization of Holonomic Constraints, J. Appl. Math. Mech., 1990, vol. 54, no. 5, pp. 705-708; see also: Prikl. Mat. Mekh., 1990, vol. 54, no. 5, pp. 858-861. · Zbl 0759.70011 · doi:10.1016/0021-8928(90)90121-P
[23] Kozlov, V.V., Dynamics of Systems with Nonintegrable Constraints: 1, Mosc. Univ. Mech. Bull., 1982, vol. 37, nos. 3-4, pp. 27-34; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1982, no. 3, pp. 92-100. · Zbl 0558.70012
[24] Kozlov, V.V., Dynamics of Systems with Nonintegrable Constraints: 2, Mosc. Univ. Mech. Bull., 1982, vol. 37, nos. 3-4, pp. 74-80; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1982, no. 4, pp. 70-76. · Zbl 0508.70012
[25] Kozlov, V.V., Realization of Nonintegrable Constraints in Classical Mechanics, Sov. Phys. Dokl., 1983, vol. 28, pp. 735-737; see also: Dokl. Akad. Nauk SSSR, 1983, vol. 272, no. 3, pp. 550-554. · Zbl 0579.70014
[26] Kozlov, V.V., On the Realization of Constraints in Dynamics, J. Appl. Math. Mech., 1992, vol. 56, no. 4, pp. 594-600; see also: Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 692-698. · Zbl 0788.70007 · doi:10.1016/0021-8928(92)90017-3
[27] Kozlov, V.V., Notes on Dry Friction and Nonholonomic Constraints, Nelin. Dinam., 2010, vol. 6, no. 4, pp. 903-906 (Russian). · doi:10.20537/nd1004014
[28] Lewis, A.D. and Murray, R.M., Variational Principles for Constrained Systems: Theory and Experiment, Internat. J. Non-Linear Mech., 1995, vol. 30, no. 6, pp. 793-815. · Zbl 0864.70008 · doi:10.1016/0020-7462(95)00024-0
[29] Marle, Ch.-M., Various Approaches to Conservative and Nonconservative Nonholonomic Systems, Rep. Math. Phys., 1998, vol. 42, nos. 1-2, pp. 211-229. · Zbl 0931.37023 · doi:10.1016/S0034-4877(98)80011-6
[30] Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 1972. · Zbl 0245.70011
[31] Rubin, H. and Ungar, P., Motion under a Strong Constraining Force, Comm. Pure Appl. Math., 1957, vol. 10, pp. 65-87. · Zbl 0077.17401 · doi:10.1002/cpa.3160100103
[32] Ruina, A., Nonholonomic Stability Aspects of Piecewise Holonomic Systems, Rep. Math. Phys., 1998, vol. 42, nos. 1-2, pp. 91-100. · Zbl 0942.70013 · doi:10.1016/S0034-4877(98)80006-2
[33] Sidek, N. and Sarkar, N., Dynamic Modeling and Control of Nonholonomic Mobile Robot with Lateral Slip, in ICONS’08: Third International Conference on Systems (Cancún, Mexico, April 2008), pp. 35-40. · Zbl 0666.58004
[34] Takens, F., Motion under the Influence of a Strong Constraining Force, 425-445 (1980) · Zbl 0458.58010 · doi:10.1007/BFb0087006
[35] Tikhonov, A.N., Systems of Differential Equations Containing Small Parameters in the Derivatives, Mat. Sb. (N. S.), 1952, vol. 31(73), no. 3, pp. 575-586 (Russian). · Zbl 0048.07101
[36] Vershik, A. M. and Gershkovich, V.Ya., Nonholonomic Problems and the Theory of Distributions, Acta Appl. Math., 1988, vol. 12, no. 2, pp. 181-209. · Zbl 0666.58004 · doi:10.1007/BF00047498
[37] Wang, J.-Ch. and Huang, H.-P., Creep Dynamics of Nonholonomic Systems, in Proc. of the 1996 IEEE Internat. Conf. on Robotics and Automation (Minneapolis,Minn., 22-28 Apr, 1996): Vol. 4, pp. 3452-3457.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.