×

New worldsheet formulae for conformal supergravity amplitudes. (English) Zbl 1395.83123

Summary: We use 4d ambitwistor string theory to derive new worldsheet formulae for tree-level conformal supergravity amplitudes supported on refined scattering equations. Unlike the worldsheet formulae for super-Yang-Mills or supergravity, the scattering equations for conformal supergravity are not in general refined by MHV degree. Nevertheless, we obtain a concise worldsheet formula for any number of scalars and gravitons which we lift to a manifestly supersymmetric formula using four types of vertex operators. The theory also contains states with non-plane wave boundary conditions and we show that the corresponding amplitudes can be obtained from plane-wave amplitudes by applying momentum derivatives. Such derivatives are subtle to define since the formulae are intrinsically four-dimensional and on-shell, so we develop a method for computing momentum derivatives of spinor variables.

MSC:

83E50 Supergravity
53Z05 Applications of differential geometry to physics
83E30 String and superstring theories in gravitational theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
81R25 Spinor and twistor methods applied to problems in quantum theory

References:

[1] S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett.56 (1986) 2459 [INSPIRE].
[2] Nair, VP, A current algebra for some gauge theory amplitudes, Phys. Lett., B 214, 215, (1988) · doi:10.1016/0370-2693(88)91471-2
[3] Witten, E., Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys., 252, 189, (2004) · Zbl 1105.81061 · doi:10.1007/s00220-004-1187-3
[4] N. Berkovits, An alternative string theory in twistor space for N = 4 superYang-Mills, Phys. Rev. Lett.93 (2004) 011601 [hep-th/0402045] [INSPIRE]. · Zbl 1391.81197
[5] R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev.D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].
[6] N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP08 (2004) 009 [hep-th/0406051] [INSPIRE].
[7] A. Hodges, A simple formula for gravitational MHV amplitudes, arXiv:1204.1930 [INSPIRE]. · Zbl 1388.81263
[8] D. Skinner, Twistor Strings for N = 8 Supergravity, arXiv:1301.0868 [INSPIRE].
[9] Cachazo, F.; He, S.; Yuan, EY, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett., 113, 171601, (2014) · doi:10.1103/PhysRevLett.113.171601
[10] D.B. Fairlie and D.E. Roberts, Dual Models Without Tachyons — A New Approach, PRINT-72-2440 [INSPIRE]. · Zbl 1388.81166
[11] D.J. Gross and P.F. Mende, The High-Energy Behavior of String Scattering Amplitudes, Phys. Lett.B 197 (1987) 129 [INSPIRE].
[12] Mason, L.; Skinner, D., Ambitwistor strings and the scattering equations, JHEP, 07, 048, (2014) · doi:10.1007/JHEP07(2014)048
[13] Adamo, T.; Casali, E.; Skinner, D., Ambitwistor strings and the scattering equations at one loop, JHEP, 04, 104, (2014) · doi:10.1007/JHEP04(2014)104
[14] Geyer, Y.; Mason, L.; Monteiro, R.; Tourkine, P., Loop integrands for scattering amplitudes from the Riemann sphere, Phys. Rev. Lett., 115, 121603, (2015) · doi:10.1103/PhysRevLett.115.121603
[15] Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor Strings in Four Dimensions, Phys. Rev. Lett.113 (2014) 081602 [arXiv:1404.6219] [INSPIRE]. · Zbl 1309.83090
[16] I. Bandos, Twistor/ambitwistor strings and null-superstrings in spacetime of D = 4\(,\) 10 and 11 dimensions, JHEP09 (2014) 086 [arXiv:1404.1299] [INSPIRE]. · Zbl 1333.81306
[17] M. Spradlin and A. Volovich, From Twistor String Theory To Recursion Relations, Phys. Rev.D 80 (2009) 085022 [arXiv:0909.0229] [INSPIRE].
[18] Cachazo, F.; He, S.; Yuan, EY, Scattering in three dimensions from rational maps, JHEP, 10, 141, (2013) · doi:10.1007/JHEP10(2013)141
[19] A.E. Lipstein, Soft Theorems from Conformal Field Theory, JHEP06 (2015) 166 [arXiv:1504.01364] [INSPIRE]. · Zbl 1388.83296
[20] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press, (2016), [arXiv:1212.5605] [INSPIRE]. · Zbl 1365.81004
[21] P. Heslop and A.E. Lipstein, On-shell diagrams for\( \mathcal{N}=8 \)supergravity amplitudes, JHEP06 (2016) 069 [arXiv:1604.03046] [INSPIRE]. · Zbl 1388.83822
[22] Herrmann, E.; Trnka, J., Gravity on-shell diagrams, JHEP, 11, 136, (2016) · Zbl 1390.83402 · doi:10.1007/JHEP11(2016)136
[23] Farrow, JA; Lipstein, AE, From 4d ambitwistor strings to on shell diagrams and back, JHEP, 07, 114, (2017) · Zbl 1380.81398 · doi:10.1007/JHEP07(2017)114
[24] E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys.B 182 (1981) 173 [INSPIRE].
[25] E.S. Fradkin and A.A. Tseytlin, Conformal Anomaly in Weyl Theory and Anomaly Free Superconformal Theories, Phys. Lett.B 134 (1984) 187 [INSPIRE]. · Zbl 0967.83513
[26] Fradkin, ES; Tseytlin, AA, Conformal supergravity, Phys. Rept., 119, 233, (1985) · doi:10.1016/0370-1573(85)90138-3
[27] J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE]. · Zbl 1258.83002
[28] M.T. Anderson \(L\)\^{}{2}curvature and volume renormalization of AHE metrics on 4-manifolds, Math. Res. Lett.8 (2001) 171 [math/0011051]. · Zbl 0999.53034
[29] G. Anastasiou and R. Olea, From conformal to Einstein Gravity, Phys. Rev.D 94 (2016) 086008 [arXiv:1608.07826] [INSPIRE]. · Zbl 1383.83102
[30] Adamo, T.; Mason, L., Einstein supergravity amplitudes from twistor-string theory, Class. Quant. Grav., 29, 145010, (2012) · Zbl 1246.83211 · doi:10.1088/0264-9381/29/14/145010
[31] T. Adamo and L. Mason, Conformal and Einstein gravity from twistor actions, Class. Quant. Grav.31 (2014) 045014 [arXiv:1307.5043] [INSPIRE]. · Zbl 1286.83068
[32] Ahn, C-h, Comments on MHV tree amplitudes for conformal supergravitons from topological B-model, JHEP, 07, 004, (2005) · doi:10.1088/1126-6708/2005/07/004
[33] L. Dolan and J.N. Ihry, Conformal Supergravity Tree Amplitudes from Open Twistor String Theory, Nucl. Phys.B 819 (2009) 375 [arXiv:0811.1341] [INSPIRE]. · Zbl 1194.83096
[34] J. Broedel and B. Wurm, New Twistor String Theories revisited, Phys. Lett.B 675 (2009) 463 [arXiv:0902.0550] [INSPIRE].
[35] T. Adamo and L. Mason, Twistor-strings and gravity tree amplitudes, Class. Quant. Grav.30 (2013) 075020 [arXiv:1207.3602] [INSPIRE]. · Zbl 1266.83165
[36] T. Adamo, S. Nakach and A.A. Tseytlin, Scattering of conformal higher spin fields, arXiv:1805.00394 [INSPIRE].
[37] H. Johansson and J. Nohle, Conformal Gravity from Gauge Theory, arXiv:1707.02965 [INSPIRE].
[38] T. Azevedo and O.T. Engelund, Ambitwistor formulations of R\^{}{2}gravity and (DF)\^{}{2}gauge theories, JHEP11 (2017) 052 [arXiv:1707.02192] [INSPIRE]. · Zbl 1383.83085
[39] J.A. Farrow, A Monte Carlo Approach to the 4D Scattering Equations, arXiv:1806.02732 [INSPIRE].
[40] Loebbert, F.; Mojaza, M.; Plefka, J., Hidden conformal symmetry in tree-level graviton scattering, JHEP, 05, 208, (2018) · Zbl 1391.81197 · doi:10.1007/JHEP05(2018)208
[41] Arkani-Hamed, N.; Trnka, J., The amplituhedron, JHEP, 10, 030, (2014) · Zbl 1388.81166 · doi:10.1007/JHEP10(2014)030
[42] Maldacena, JM; Pimentel, GL, On graviton non-gaussianities during inflation, JHEP, 09, 045, (2011) · Zbl 1301.81147 · doi:10.1007/JHEP09(2011)045
[43] S. Raju, Four Point Functions of the Stress Tensor and Conserved Currents in AdS_{4}/CFT_{3}, Phys. Rev.D 85 (2012) 126008 [arXiv:1201.6452] [INSPIRE].
[44] Adamo, T., Gravity with a cosmological constant from rational curves, JHEP, 11, 098, (2015) · Zbl 1388.81263 · doi:10.1007/JHEP11(2015)098
[45] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[46] F. Cachazo and D. Skinner, Gravity from Rational Curves in Twistor Space, Phys. Rev. Lett.110 (2013) 161301 [arXiv:1207.0741] [INSPIRE]. · Zbl 1105.81061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.