×

Semi-discrete a priori error analysis for the optimal control of the unsteady Navier-Stokes equations with variational multiscale stabilization. (English) Zbl 1410.49021

Summary: In this work, the optimal control problems of the unsteady Navier-Stokes equations with variational multiscale stabilization (VMS) are considered. At first, the first order continuous optimality conditions are obtained. Since the adjoint equation of the Navier-Stokes problem is a convection diffusion type system, then the same stabilization is applied to it. Semi discrete a priori error estimates are obtained for the state, adjoint state and control variables. Crank-Nicholson time discretization is used to get the fully discrete scheme. Numerical examples verify the theoretical findings and show the efficiency of the stabilization for higher Reynolds number.

MSC:

49K20 Optimality conditions for problems involving partial differential equations
49M25 Discrete approximations in optimal control
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D55 Flow control and optimization for incompressible viscous fluids

Software:

FreeFem++
Full Text: DOI

References:

[1] Abergel, F.; Temam, R., On some optimal control problems in fluid mechanics, Theoret. Comput. Fluid Mech., 1, 6, 303-325 (1990) · Zbl 0708.76106
[2] Abraham, F.; Behry, M.; Heinkenschloss, M., The effect of stabilization in finite element methods for the optimal boundary control of the Oseen equations, Finite Elem. Anal. Des., 41, 3, 229-251 (2004)
[3] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[4] Becker, R.; Vexler, B., Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. Math., 106, 3, 349-367 (2007) · Zbl 1133.65037
[5] Borzi, A.; Kunisch, K., A globalization strategy for the multigrid solution of elliptic optimal control problems, Optim. Methods Softw., 21, 3, 445-459 (2006) · Zbl 1136.49311
[6] Braack, M., Optimal control in fluid mechanics by finite elements with symmetric stabilization, SIAM J. Control Optim., 48, 2, 672-687 (2009) · Zbl 1186.35134
[7] Braack, M.; Burman, E.; John, V.; Lube, G., Stabilized finite element methods for the generalized Oseen problem, Comput. Meth. Appl. Mech. Eng., 196, 853-866 (2007) · Zbl 1120.76322
[8] Casas, E., Optimality conditions for some control problems of turbulent flows, (Gunzburger, M. D. (1995), Springer: Springer New York), 127-147 · Zbl 0864.49018
[9] Chen, G.; Feng, M., Subgrid scale eddy viscosity finite element method on optimal control of system governed by unsteady Oseen equations, Comput. Optim. Appl., 58, 679-705 (2014) · Zbl 1297.49047
[10] Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Eng., 156, 185-210 (1998) · Zbl 0959.76040
[11] Constantin, P.; Foias, C., Navier-Stokes Equations (1988), The University of Chicago Press: The University of Chicago Press Chicago · Zbl 0687.35071
[12] Çıbık, A.; Kaya, S., A projection-based stabilized finite element method for steady-state natural convection problem, J. Math. Anal. Appl., 381, 2, 469-484 (2011) · Zbl 1331.76066
[13] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations (1986), Springer · Zbl 0585.65077
[14] Gunzburger, M. D.; Hou, L.; Svobodny, T., Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls, Math. Comp., 57, 195, 123-151 (1991) · Zbl 0747.76063
[15] Gunzburger, M. D.; Manservisi, S., Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed controls, SIAM J. Numer. Anal., 37, 5, 1481-1512 (2000) · Zbl 0963.35150
[16] Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice and Algorithms (1989), Academic Press: Academic Press Boston · Zbl 0697.76031
[17] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 3-4, 251-265 (2012) · Zbl 1266.68090
[18] Heinkenschloss, M.; Leykekhman, D., Local Error Estimates for SUPG Solutions of Advection-dominated Elliptic Linear-quadratic Optimal Control Problems (2008), Rice University: Rice University Houston
[19] Hintermüller, M.; Hinze, M., An SQP semi-smooth Newton-type algorithm applied to the instationary Navier-Stokes system subject to control constraints, SIAM J. Optim., 16, 4, 1177-1200 (2006) · Zbl 1131.90073
[20] Hinze, M.; Yan, N.; Zhou, Z., Variational discretization for optimal control governed by convection dominated diffusion equations, J. Comput. Math., 27, 237-253 (2009) · Zbl 1212.65248
[21] Hinze, M., Optimal and Instantaneous Control of the Instationary Navier-Stokes Equations (2002), Uberarbeitete Version der Habilitationsschrift, Technische Universitat Dresden
[22] Hinze, M.; Kunisch, K., Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim., 40, 925-946 (2001) · Zbl 1012.49026
[23] John, V.; Kaya, S.; Kindl, A., Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity, J. Math. Anal. Appl., 344, 627-641 (2008) · Zbl 1154.76032
[24] John, V.; Kaya, S.; Layton, W., A two-level variational multiscale method for convection-diffusion equations, Comput. Meth. Appl. Mech. Eng., 195, 4594-4603 (2005) · Zbl 1124.76028
[25] Kaya, S.; Riviere, B., A two-grid stabilization method for solving the steady-state Navier-Stokes equations, Numer. Methods Partial Differ. Equ., 22, 3, 728-743 (2006) · Zbl 1089.76034
[26] Layton, W. J., A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput., 133, 147-157 (2002) · Zbl 1024.76026
[27] Sun, T., Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem, Int. J. Numer. Anal. Model., 7, 87-107 (2010) · Zbl 1499.65529
[28] Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis (1984), North-Holland: North-Holland Amsterdam · Zbl 0568.35002
[29] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1997), Springer · Zbl 0871.35001
[30] Tröltzsch, F.; Wachsmuth, D., Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 12, 1, 93-119 (2006) · Zbl 1111.49017
[31] Ulbrich, M., Constrained optimal control of Navier-Stokes flow by semismooth Newton methods, Syst. Control Lett., 48, 297-311 (2003) · Zbl 1157.49312
[32] Ulbrich, M., Nonsmooth Newton-like Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces (2001), Habilitationsschrift, Zentrum Mathematik, Technische Universität München: Habilitationsschrift, Zentrum Mathematik, Technische Universität München Germany
[33] Wachsmuth, D., Sufficient second-order optimality conditions for convex control constraints, J. Math. Anal. Appl., 319, 1, 228-247 (2006) · Zbl 1106.49040
[34] Wachsmuth, D., Optimal Control of the Unsteady Navier-Stokes Equations, Ph.D. dissertation (2006), Technische Universität Berlin · Zbl 1232.49006
[35] Wang, G., Optimal controls of 3-dimensional Navier-Stokes equations with state constraints, SIAM J. Control Optim., 41, 2, 583-606 (2002) · Zbl 1022.93026
[36] Zhou, Z.; Yan, N., The local discontinuous Galerkin method for optimal control problem governed by convection-diffusion equations, Int. J. Numer. Anal. Model., 7, 681-699 (2010) · Zbl 1195.65086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.