×

A projection-based stabilized finite element method for steady-state natural convection problem. (English) Zbl 1331.76066

Summary: We formulate a projection-based stabilization finite element technique for solving steady-state natural convection problems. In particular, we consider heat transport through combined solid and fluid media. This stabilization does not act on the large flow structures. Based on the projection stabilization idea, finite element error analysis of the problem is investigated and optimal errors for the velocity, temperature and pressure are established. We also present some numerical tests which both verify the theoretical predictions and demonstrate the method’s promise.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R10 Free convection
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Software:

FreeFem++

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101
[2] Boland, J.; Layton, W., An analysis of the finite element method for natural convection problems, Numer. Methods Partial Differential Equations, 2, 115-126 (1990) · Zbl 0703.76071
[3] Boland, J.; Layton, W., Error analysis for finite element methods for steady natural convection problems, Numer. Funct. Anal. Optim., 11, 449-483 (1990) · Zbl 0714.76090
[4] Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg., 156, 185-210 (1998) · Zbl 0959.76040
[5] de Vahl Davis, D., Natural convection of air in a square cavity: A benchmark solution, Internat. J. Numer. Methods Fluids, 3, 249-264 (1983) · Zbl 0538.76075
[6] Girault, V.; Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Math., vol. 749 (1979), Springer-Verlag: Springer-Verlag Berlin · Zbl 0396.65070
[7] Gresho, P. M.; Lee, M.; Chan, S. T.; Sani, R. L., Solution of time dependent, incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite element method, (Lecture Notes in Math., vol. 771 (1980), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 203-222 · Zbl 0428.76026
[8] Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN, 33, 1293-1316 (1999) · Zbl 0946.65112
[9] Gunzburger, M., Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice and Algorithms (1989), Academic Press: Academic Press Boston · Zbl 0697.76031
[10] Hecht, F., FreeFem++ manual (2009)
[11] Heitmann, N., Subgrid stabilization of time-dependent convection dominated diffusive transport, J. Math. Anal. Appl., 331, 38-50 (2007) · Zbl 1147.76039
[12] Hughes, T. J.R., Multiscale phenomena: Greenʼs functions, the Dirichlet-to-Neumann formulation, subgrid-scale models bubbles and the origin of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 387-401 (1995) · Zbl 0866.76044
[13] John, V.; Kaya, S., A finite element variational multiscale method for the Navier Stokes equations, SIAM J. Sci. Comput., 26, 1485-1503 (2005) · Zbl 1073.76054
[14] John, V.; Kaya, S.; Layton, W., A two-level variational multiscale method for convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 195, 4594-4603 (2005) · Zbl 1124.76028
[15] Kaya, S.; Riviere, B., A two-grid stabilization method for solving the steady-state Navier-Stokes equations, Numer. Methods Partial Differential Equations, 3, 728-743 (2006) · Zbl 1089.76034
[16] Korpela, S. A.; Gözüm, D.; Baxi, C. B., On the stability of the conduction regime or natural convection in a vertical slot, Internat. J. Heat Mass Transfer, 16, 1683-1690 (1973)
[17] Layton, W., Introduction to Finite Element Methods for Incompressible, Viscous Flows (2008), SIAM Publ.
[18] Layton, W. J., A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput., 133, 147-157 (2002) · Zbl 1024.76026
[19] J. Löwe, G. Lube, A projection-based variational multiscale method for large-eddy simulation with application to non-isothermal free-convection problems, Technical report, NAM-Preprint, 2010.; J. Löwe, G. Lube, A projection-based variational multiscale method for large-eddy simulation with application to non-isothermal free-convection problems, Technical report, NAM-Preprint, 2010.
[20] Manzari, M. T., An explicit finite element algorithm for convective heat transfer problems, Internat. J. Numer. Methods Heat Fluid Flow, 9, 860-877 (1999) · Zbl 0955.76050
[21] Massarotti, N.; Nithiarasu, P.; Zienkiewicz, O. C., Characteristic-Based-Split (CBS) algorithm for incompressible flow problems with heat transfer, Internat. J. Numer. Methods Heat Fluid Flow, 8, 969-990 (1998) · Zbl 0951.76042
[22] Braack, M.; Burman, E.; John, V.; Lube, G., Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg., 196, 853-866 (2007) · Zbl 1120.76322
[23] H. Melhem, Finite element approximation to heat transfer through combined solid and fluid media, PhD thesis, University of Pittsburgh, 1987.; H. Melhem, Finite element approximation to heat transfer through combined solid and fluid media, PhD thesis, University of Pittsburgh, 1987.
[24] Rabinowitz, P. H., Existence and nonuniqueness of rectangular solutions of the Benard problem, Arch. Ration. Mech. Anal., 29, 32-57 (1968) · Zbl 0164.28704
[25] Roos, H.-G.; Stynes, M.; Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer Ser. Comput. Math. (2008), Springer-Verlag: Springer-Verlag Berlin · Zbl 1155.65087
[26] Wan, D. C.; Patnaik, B. S.V.; Wei, G. W., A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution, Numer. Heat Transfer, Part B, 40, 199-228 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.