×

Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field. (English) Zbl 1315.35200

Summary: We construct solutions to the nonlinear magnetic Schrödinger equation \[ \begin{cases} - \varepsilon^2 \Delta_{A / \varepsilon^2} u + V u = | u |^{p - 2} u & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega, \end{cases} \] in the semiclassical régime under strong magnetic fields. In contrast with the well-studied mild magnetic field régime, the limiting energy depends on the magnetic field allowing to recover the Lorentz force in the semi-classical limit. Our solutions concentrate around global or local minima of a limiting energy that depends on the electric potential and on the magnetic field. Our results cover unbounded domains, fast-decaying electric potential and unbounded electromagnetic fields. The construction is variational and is based on an asymptotic analysis of solutions to a penalized problem following the strategy of M. A. del Pino and P. L. Felmer [Calc. Var. Partial Differ. Equ. 4, No. 2, 121–137 (1996; Zbl 0844.35032); J. Funct. Anal. 149, No. 1, 245–265, Art. No. FU963085 (1997; Zbl 0887.35058); Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15, No. 2, 127–149 (1998; Zbl 0901.35023)].

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B25 Singular perturbations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35J20 Variational methods for second-order elliptic equations
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
78A25 Electromagnetic theory (general)

References:

[1] Alves, C. O.; Figueiredo, G. M.; Furtado, M. F., Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 36, 9, 1565-1586 (2011) · Zbl 1231.35222
[2] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[3] Arioli, G.; Szulkin, A., A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal., 170, 4, 277-295 (2003) · Zbl 1051.35082
[4] Barile, S., Multiple semiclassical states for singular magnetic nonlinear Schrödinger equations, Electron. J. Differential Equations, 37 (2008), 18 p · Zbl 1172.35369
[5] Barile, S., A multiplicity result for singular NLS equations with magnetic potentials, Nonlinear Anal., 68, 11, 3525-3540 (2008) · Zbl 1159.35423
[6] Barile, S.; Cingolani, S.; Secchi, S., Single-peaks for a magnetic Schrödinger equation with critical growth, Adv. Differential Equations, 11, 10, 1135-1166 (2006) · Zbl 1146.35411
[7] Bartsch, T.; Dancer, E. N.; Peng, S., On multi-bump semi-classical bound states of nonlinear Schrödinger equations with electromagnetic fields, Adv. Differential Equations, 11, 7, 781-812 (2006) · Zbl 1146.35081
[8] Bonheure, D.; Di Cosmo, J.; Van Schaftingen, J., Nonlinear Schrödinger equation with unbounded or vanishing potentials: solutions concentrating on lower dimensional spheres, J. Differential Equations, 252, 2, 941-968 (2012) · Zbl 1232.35057
[9] Bonheure, D.; Van Schaftingen, J., Nonlinear Schrödinger equations with potentials vanishing at infinity, C. R. Math. Acad. Sci. Paris, 342, 12, 903-908 (2006) · Zbl 1099.35127
[10] Bonheure, D.; Van Schaftingen, J., Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoam., 24, 1, 297-351 (2008) · Zbl 1156.35084
[11] Cao, D.; Tang, Z., Existence and uniqueness of multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields, J. Differential Equations, 222, 2, 381-424 (2006) · Zbl 1357.35258
[12] Chabrowski, J., Existence results for nonlinear Schrödinger equations with electromagnetic fields, Monatsh. Math., 137, 4, 261-272 (2002) · Zbl 1034.35010
[13] Chabrowski, J.; Szulkin, A., On the Schrödinger equation involving a critical Sobolev exponent and magnetic field, Topol. Methods Nonlinear Anal., 25, 1, 3-21 (2005) · Zbl 1176.35022
[14] Cingolani, S., Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field, J. Differential Equations, 188, 1, 52-79 (2003) · Zbl 1062.81056
[15] Cingolani, S.; Clapp, M., Intertwining semiclassical bound states to a nonlinear magnetic Schrödinger equation, Nonlinearity, 22, 9, 2309-2331 (2009) · Zbl 1173.35678
[16] Cingolani, S.; Clapp, M., Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory, Commun. Pure Appl. Anal., 9, 5, 1263-1281 (2010) · Zbl 1203.35083
[17] Cingolani, S.; Jeanjean, L.; Secchi, S., Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions, ESAIM Control Optim. Calc. Var., 15, 3, 653-675 (2009) · Zbl 1221.35393
[18] Cingolani, S.; Secchi, S., Semiclassical limit for nonlinear Schrödinger equations with electromagnetic fields, J. Math. Anal. Appl., 275, 1, 108-130 (2002) · Zbl 1014.35087
[19] Cingolani, S.; Secchi, S., Semiclassical states for NLS equations with magnetic potentials having polynomial growths, J. Math. Phys., 46, 5, 053503 (2005), 19 · Zbl 1110.81081
[20] del Pino, M.; Felmer, P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4, 2, 121-137 (1996) · Zbl 0844.35032
[21] del Pino, M.; Felmer, P. L., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, 1, 245-265 (1997) · Zbl 0887.35058
[22] del Pino, M.; Felmer, P. L., Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 2, 127-149 (1998) · Zbl 0901.35023
[23] Di Cosmo, J., Nonlinear Schrödinger equation and Schrödinger-Poisson system in the semiclassical limit (2011), Université catholique de Louvain, Doctoral thesis
[24] Di Cosmo, J.; Van Schaftingen, J., Stationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maxima, Calc. Var. Partial Differential Equations, 47, 1-2, 243-271 (2013) · Zbl 1264.35213
[25] Ding, Y.; Liu, X., Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities, Manuscripta Math., 140, 1-2, 51-82 (2013) · Zbl 1283.35122
[26] Esteban, M. J.; Lions, P.-L., Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, (Partial Differential Equations and the Calculus of Variations, Vol. I. Partial Differential Equations and the Calculus of Variations, Vol. I, Progr. Nonlinear Differential Equations Appl., vol. 1 (1989), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 401-449 · Zbl 0702.35067
[27] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1998), Springer: Springer Berlin · Zbl 0691.35001
[28] Kato, T., Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces. Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces, Jerusalem, 1972. Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces. Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces, Jerusalem, 1972, Israel J. Math., 13, 135-148 (1972) · Zbl 0246.35025
[29] Kovanen, T.; Tarhasaari, T.; Kettunen, L., Computation of local electromagnetic force, IEEE Magn. Lett., 47, 5, 894-897 (2011)
[30] Kurata, K., Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields, Nonlinear Anal. Ser. A: Theory Methods, 41, 5-6, 763-778 (2000) · Zbl 0993.35081
[31] Lieb, E. H.; Loss, M., Analysis, Grad. Stud. Math., vol. 14 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[32] Lions, P.-L., The concentration-compactness principle in the calculus of variations: the locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 4, 223-283 (1984) · Zbl 0704.49004
[33] Moroz, V.; Van Schaftingen, J., Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials, C. R. Math. Acad. Sci. Paris, 347, 15-16, 921-926 (2009) · Zbl 1177.35227
[34] Moroz, V.; Van Schaftingen, J., Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, Calc. Var. Partial Differential Equations, 37, 1-2, 1-27 (2010) · Zbl 1186.35038
[35] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 2, 153-184 (2013) · Zbl 1285.35048
[36] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65 (1986), Conference Board of the Mathematical Sciences: Conference Board of the Mathematical Sciences Washington, DC · Zbl 0609.58002
[37] Rabinowitz, P. H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 2, 270-291 (1992) · Zbl 0763.35087
[38] Secchi, S.; Squassina, M., On the location of spikes for the Schrödinger equation with electromagnetic field, Commun. Contemp. Math., 7, 2, 251-268 (2005) · Zbl 1157.35482
[39] Squassina, M., Soliton dynamics for the nonlinear Schrödinger equation with magnetic field, Manuscripta Math., 130, 4, 461-494 (2009) · Zbl 1179.81066
[40] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergeb. Math. Grenzgeb. (3), vol. 34 (2008), Springer: Springer Berlin · Zbl 1284.49004
[41] Trudinger, N. S., Linear elliptic operators with measurable coefficients, Ann. Sc. Norm. Super. Pisa (3), 27, 265-308 (1973) · Zbl 0279.35025
[42] Van Schaftingen, J., Interpolation inequalities between Sobolev and Morrey-Campanato spaces: a common gateway to concentration-compactness and Gagliardo-Nirenberg, Port. Math., 71, 3-4, 159-175 (2014) · Zbl 1326.46032
[43] Willem, M., Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24 (1996), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA · Zbl 0856.49001
[44] Yin, H.; Zhang, P., Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity, J. Differential Equations, 247, 2, 618-647 (2009) · Zbl 1178.35353
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.