×

Optimal distributed control problem for cubic nonlinear Schrödinger equation. (English) Zbl 1406.35352

The nonhomogeneous NLS equation \[ \begin{cases} \partial_zu=i\partial_t^2u+i|u|^2u+g,\quad z\in[0,\zeta],\quad t\in\mathbb R\\ u(0,t)=u_0(t) \end{cases}{(\ast)} \] models the propagation of pulses in an optical fiber influenced by the presence of noise generation through the term \(g\in L^2([0,\zeta];L^2(\mathbb R))\).
The authors prove that the problem \((*)\) is well posed, with its unique solution (in an adequate class) denoted by \(u[g]\). Furthermore, they prove the existence of an optimal noise configuration \(g_*\) which minimizes \[ \mathcal J(g)=\|g\|_{L^2([0,\zeta];L^2)}^2+\kappa\|\sigma(u[g](\zeta)-v_\zeta)\|_{L^2(\mathbb R)}^2 \] over the configurations \(g\) obeying an admissible condition of the form, \[ \|\sigma(u[g](\zeta)-v_\zeta)\|_{L^2(\mathbb R)}^2\leq \eta \] where \(\sigma(t)=k e^{-\frac{(t-t_r)^2}{\tau^2}}\), for a given \((t_r,\tau)\in\mathbb R^2\), is normalized in \(L^2(\mathbb R)\), and \(v_\zeta=v(\cdot,\zeta)\) with \(v(z,t)\) the solution of the noise free problem \[ \begin{cases} \partial_zv=i\partial_t^2v+i|v|^2v,\quad z\in[0,\zeta],\quad t\in\mathbb R\\ v(0,t)=v_0(t). \end{cases} \]

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
49J20 Existence theories for optimal control problems involving partial differential equations
Full Text: DOI

References:

[1] Adams RA, Fournier JJF (2003) Sobolev spaces. Elsevier Science, Pure and Applied Mathematics, Amsterdam · Zbl 1098.46001
[2] Agrawal GP (2002) Fiber optics communication systems, 3rd edn. Wiley, New York · doi:10.1002/0471221147
[3] Aksoy, N. Yildirim; Aksoy, E.; Kocak, Y., An optimal control problem with final observation for systems governed by nonlinear Schrödinger equation, Filomat, 30, 649-665, (2016) · Zbl 1461.49004 · doi:10.2298/FIL1603649Y
[4] Aronna, MS; Bonnans, F.; Kronër, A., Optimal control of bilinear systems in a complex space setting, IFAC-PapersOnLine, 50, 2872-2877, (2017) · doi:10.1016/j.ifacol.2017.08.642
[5] Baudouin, L.; Kavian, O.; Puel, JP, Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J Differ Equ, 216, 188-222, (2005) · Zbl 1109.35094 · doi:10.1016/j.jde.2005.04.006
[6] Calderón, AP, Commutators of singular integral operators, Proc Natl Acad Sci USA, 53, 1092-1099, (1965) · Zbl 0151.16901 · doi:10.1073/pnas.53.5.1092
[7] Cancès, E.; Bris, C.; Pilot, M., Contrôle optimal bilinéaire d’une équation de Schrödinger, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, 330, 567-571, (2000) · Zbl 0953.49005
[8] Casas, E., Boundary control of semilinear elliptic equations with pointwise state constraints, SIAM J Control Optim, 31, 993-1006, (1993) · Zbl 0798.49020 · doi:10.1137/0331044
[9] Cazenave T (2003) Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10. New York University Courant Institute of Mathematical Sciences, New York · Zbl 1055.35003
[10] Cazenave T, Haraux A (1998) An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13. The Clarendon Press, Oxford University Press, New York · Zbl 0926.35049
[11] Leo, M.; Rial, D., Well posedness and smoothing effect of Schrödinger-Poisson equation, J Math Phys, 48, 093509, (2007) · Zbl 1152.81652 · doi:10.1063/1.2776844
[12] Essiambre, RJ; Foschini, GJ; Kramer, G.; Winzer, PJ, Capacity limits of information transport in fiber-optic networks, Phys Rev Lett, 101, 163901, (2008) · doi:10.1103/PhysRevLett.101.163901
[13] Feng, B.; Zhao, D.; Chen, P., Optimal bilinear control of nonlinear Schrödinger equations with singular potentials, Nonlinear Anal, 107, 12-21, (2014) · Zbl 1297.49005 · doi:10.1016/j.na.2014.04.017
[14] Gordon, JP; Haus, HA, Random walk of coherently amplified solitons in optical fiber transmission, Opt. Lett., 11, 665-667, (1986) · doi:10.1364/OL.11.000665
[15] Gordon, JP; Mollenauer, LF, Phase noise in photonic communications systems using linear amplifiers, Opt. Lett., 15, 1351-1353, (1990) · doi:10.1364/OL.15.001351
[16] Hasegawa A, Kodama Y (1995) Solitons in optical communications. Oxford series in optical and imaging sciences. Oxford, Oxford University Press · Zbl 0840.35092
[17] Hayashi, N.; Ozawa, T., Smoothing effect for some Schrödinger equations, J Funct Anal, 85, 307-348, (1989) · Zbl 0681.35079 · doi:10.1016/0022-1236(89)90039-6
[18] Hintermüller, M.; Marahrens, D.; Markowich, PA; Sparber, C., Optimal bilinear control of Gross-Pitaevskii equations, SIAM J Control Optim, 51, 2509-2543, (2013) · Zbl 1277.49005 · doi:10.1137/120866233
[19] Iannone E, Matera F, Mecozzi A, Settembre M (1998) Nonlinear optical communication networks. Wiley, New York
[20] Ito, K.; Kunisch, K., Optimal bilinear control of an abstract Schrödinger equation, SIAM J Control Optim, 46, 274-287, (2007) · Zbl 1136.35089 · doi:10.1137/05064254X
[21] Kenig CE, Ponce G, Vega L (1993) Small solutions to nonlinear Schrödinger equations. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 10 · Zbl 0786.35121
[22] Laurent, C., Internal control of the Schrödinger equation, Math Control Rel Fields, 4, 161-186, (2014) · Zbl 1281.93022 · doi:10.3934/mcrf.2014.4.161
[23] Marcuse, D., Calculation of bit-error probability for a lightwave system with optical amplifiers and post-detection gaussian noise, J Lightwave Technol, 9, 505-513, (1991) · doi:10.1109/50.76665
[24] McKinstrie, CJ; Lakoba, TI, Probability-density function for energy perturbations of isolated optical pulses, Opt Express, 11, 3628-3648, (2003) · doi:10.1364/OE.11.003628
[25] Moore, RO; Biondini, G.; Kath, WL, Importance sampling for noise-induced amplitude and timing jitter in soliton transmission systems, Opt Lett, 28, 105-107, (2003) · doi:10.1364/OL.28.000105
[26] Moore, RO; Biondini, G.; Kath, WL, A method to compute statistics of large, noise-induced perturbations of nonlinear Schrödinger solitons, SIAM Rev, 50, 523-549, (2008) · Zbl 1153.35073 · doi:10.1137/080722977
[27] Ponce, G., On the global well-posedness of the Benjamin-Ono equation, Differ Integral Equ, 4, 527-542, (1991) · Zbl 0732.35038
[28] Rial, D., Weak solutions for the derivative nonlinear Schrödinger equation, Nonlinear Anal Theory Methods Appl, 49, 149-158, (2002) · Zbl 1027.35130 · doi:10.1016/S0362-546X(00)00217-0
[29] Terekhov, IS; Vergeles, SS; Turitsyn, SK, Conditional probability calculations for the nonlinear Schrödinger equation with additive noise, Phys Rev Lett, 113, 230602, (2014) · doi:10.1103/PhysRevLett.113.230602
[30] Zuazua, E., Remarks on the controllability of the Schrödinger equation, CRM Proc Lect Notes, 33, 193-211, (2003) · doi:10.1090/crmp/033/12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.