×

Optimal bilinear control of nonlinear Schrödinger equations with singular potentials. (English) Zbl 1297.49005

To investigate the optimal bilinear control problem for the nonlinear Schrödinger equation one uses the same cost functional as in the paper of M. Hintermüller et al. [SIAM J. Control Optim. 51, No. 3, 2509–2543 (2013; Zbl 1277.49005)]. This objective functional is quadratic in the derivatives of energy and control. Under some special assumptions on the parameters and the potential in the equation, the existence of a minimizer is proved. Thanks to the global well-posedness of the Schrödinger equation for any given initial data in \(H^1\), the unconstrained cost functional is defined. This functional is Gâteaux differentiable and one obtains the first order optimality system. Comments and comparisons to results in the above mentioned article are done.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
49K20 Optimality conditions for problems involving partial differential equations
49K40 Sensitivity, stability, well-posedness
35Q55 NLS equations (nonlinear Schrödinger equations)

Citations:

Zbl 1277.49005

References:

[1] Fattorini, H., Infinite Dimensional Optimization and Control Theory (1999), Cambridge University Press · Zbl 0931.49001
[2] Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations (1971), Springer Verlag · Zbl 0203.09001
[3] Coron, J.-M., (Control and Nonlinearity. Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136 (2007), American Mathematical Society) · Zbl 1140.93002
[4] Baudouin, L.; Kavian, O.; Puel, J. P., Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differential Equations, 216, 188-222 (2005) · Zbl 1109.35094
[5] Baudouin, L.; Salomon, J., Constructive solution of a bilinear optimal control problem for a Schrödinger equation, Systems Control Lett., 57, 454-464 (2008) · Zbl 1153.49023
[6] Beauchard, K.; Coron, J.-M., Controllability of a quantum particle in a moving potential well, J. Funct. Anal., 232, 328-389 (2006) · Zbl 1188.93017
[7] Burq, N.; Zworski, M., Geometric control in the presence of a black box, J. Amer. Math. Soc., 17, 443-471 (2004) · Zbl 1050.35058
[8] Ito, K.; Kunisch, K., Optimal bilinear control of an abstract Schrödinger equation, SIAM J. Control Optim., 46, 274-287 (2007) · Zbl 1136.35089
[9] Machtyngier, K. E., Exact controllability for the Schrödinger equation, SIAM J. Control Optim., 32, 24-34 (1994) · Zbl 0795.93018
[10] Mason, P.; Sigalotti, M., Generic controllability properties for the bilinear Schrödinger equation, Comm. Partial Differential Equations, 35, 685-706 (2010) · Zbl 1193.35166
[11] Lasiecka, I.; Triggiani, R., Optimal regularity, exact controllability and uniform stabilization of the Schrödinger equation, Differential Integral Equations, 5, 521-535 (1992) · Zbl 0784.93032
[12] Lasiecka, I.; Triggiani, R.; Zhang, X., Global Uniqueness, observability and stabilization of non-conservative Schrödinger equations via pointwise Carleman estimates, J. Inverse Ill-Posed Probl., 12, 1-81 (2004) · Zbl 1057.35042
[13] Triggiani, R.; Xu, X., Pointwise Carleman estimates, global uniqueness, observability and stabilization for non-conservative Schrödinger on Riemannian manifolds at the \(H^1\)-level, AMS Contemp. Math., 426, 339-404 (2007) · Zbl 1130.35022
[14] Beauchard, K.; Laurent, C., Local controllability of linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., 95, 520-554 (2010) · Zbl 1202.35332
[15] Laurent, C., Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3, SIAM J. Math. Anal., 42, 785-832 (2010) · Zbl 1208.93035
[16] Nersesyan, V., Growth of Sobolev norms and controllability of the Schrödinger equation, Comm. Math. Phys., 290, 371-387 (2009) · Zbl 1180.93017
[17] Rosier, L.; Zhang, B. Y., Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval, SIAM J. Control Optim., 48, 972-992 (2009) · Zbl 1194.93026
[18] Rosier, L.; Zhang, B. Y., Exact boundary controllability, of the nonlinear Schrödinger equation, J. Differential Equations, 246, 4129-4153 (2009) · Zbl 1171.35015
[19] Lasiecka, I.; Triggiani, R., Well-posedness and uniform decay rates at the \(L^2(\Omega)\)-level of Schrödinger equations with nonlinear boundary dissipation, J. Evol. Equ., 6, 485-537 (2006) · Zbl 1113.35027
[20] Triggiani, R., Exact controllability in \(L^2(\Omega)\) of the Schrödinger equation in a Riemannian manifold with \(L^2(\Sigma_1)\)-Neumann boundary control, Funct. Anal. Evol. Equ., 613-636 (2008) · Zbl 1158.93009
[21] Hohenester, U.; Rekdal, P. K.; Borzi, A.; Schmiedmayer, J., Optimal quantum control of Bose Einstein condensates in magnetic microtraps, Phys. Rev. A, 75, 023602-023613 (2007)
[22] Holthaus, M., Toward coherent control of Bose-Einstein condensate in a double well, Phys. Rev. A, 64, 011601-011608 (2001)
[23] Bulatov, V.; Vugmeister, B. E.; Rabitz, H., Nonadiabatic control of Bose-Einstein condensation in optical traps, Phys. Rev. A, 60, 4875-4881 (1999)
[24] Ablowitz, M. J.; Prinari, B.; Trubatch, A. D., (Discrete and Continuous Nonlinear Schrödinger Systems. Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, vol. 302 (2004), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1057.35058
[25] Cazenave, T., (Semilinear Schrödinger Equations. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10 (2003), New York University, Courant Institute of Mathematical Sciences: New York University, Courant Institute of Mathematical Sciences New York), American Mathematical Society, Providence, RI · Zbl 1055.35003
[26] Sulem, C.; Sulem, P. L., (The Nonlinear Schrödinger Equation. The Nonlinear Schrödinger Equation, Applied Math. Sciences, vol. 139 (1999), Springer) · Zbl 0867.35094
[27] Hintermüller, M.; Marahrens, D.; Markowich, P. A.; Sparber, C., Optimal bilinear control of Gross-Pitaevskii equations, SIAM J. Control Optim., 51, 2509-2543 (2013) · Zbl 1277.49005
[28] Feng, B. H.; Liu, J. Y.; Zheng, J., Optimal bilinear control of nonlinear Hartree equation in \(R^3\), Electron. J. Differential Equations, 130, 1-14 (2013) · Zbl 1288.35430
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.