×

Cluster categories for marked surfaces: punctured case. (English) Zbl 1405.16024

In the paper under review, the authors study the cluster category \(\mathcal C(\mathbf T)\) associated to a marked surface \(\mathbf S\) with punctures and with non-empty boundary. Constructing and using skewed-gentle algebras (see [Ch. Geiss and J. A. de la Peña, Boll. Soc. Mat. Mexicana 5, No. 2, 307–326 (1999; Zbl 0959.16013)]) associated with so-called admissible triangulations \(\mathbf T\) of \(\mathbf S\), they prove that there is a bijection between tagged curves in \(\mathbf S\) and string objects in the category \(\mathcal C(\mathbf T)\). As an application, the authors provide interpretations of dimension of the first extension group in the cluster category \(\mathcal C(\mathbf T)\) as intersection numbers of tagged curves and Auslander-Reiten translation as tagged rotation. They also prove that the exchange graph of cluster tilting objects in \(\mathcal C(\mathbf T)\) is isomorphic to the exchange graph of tagged triangulations of \(\mathbf S\) and hence it is connected.

MSC:

16G20 Representations of quivers and partially ordered sets
18E30 Derived categories, triangulated categories (MSC2010)
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras
57M50 General geometric structures on low-dimensional manifolds
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers

Citations:

Zbl 0959.16013

References:

[1] M.Alim, S.Cecotti, C.Córdova, S.Espahbodi, A.Rastogi and C.Vafa, BPS quivers and spectra of complete N = 2 quantum field theories, Comm. Math. Phys.323 (2013), 1185-1227.10.1007/s00220-013-1789-8 · Zbl 1305.81118
[2] C.Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble)59 (2009), 2525-2590.10.5802/aif.2499 · Zbl 1239.16011 · doi:10.5802/aif.2499
[3] I.Assem, T.Brüstle, G.Charbonneau-Jodoin and P. G.Plamondon, Gentle algebras arising from surface triangulations, Algebra Number Theory4 (2012), 201-229.10.2140/ant.2010.4.201 · Zbl 1242.16011
[4] V. M.Bondarenko, Representations of bundles of semichained sets and their applications, St. Petersburg Math. J.3 (1992), 973-996. · Zbl 0791.06002
[5] T.Brüstle and Y.Qiu, Tagged mapping class groups: Auslander-Reiten translation, Math. Z.279 (2015), 1103-1120.10.1007/s00209-015-1405-z · Zbl 1361.16009
[6] T.Brüstle and J.Zhang, On the cluster category of a marked surface without punctures, Algebra Number Theory5 (2011), 529-566.10.2140/ant.2011.5.529 · Zbl 1250.16013
[7] A. B.Buan, R.Marsh, M.Reineke, I.Reiten and G.Todorov, Tilting theory and cluster combinatorics, Adv. Math.204 (2006), 572-618.10.1016/j.aim.2005.06.003 · Zbl 1127.16011
[8] P.Caldero, F.Chapoton and R.Schiffler, Quivers with relations arising from clusters (A_n case), Trans. Amer. Math. Soc.358 (2006), 1347-1364.10.1090/S0002-9947-05-03753-0 · Zbl 1137.16020
[9] I.Canakci and R.Schiffler, Snake graph calculus and cluster algebras from surfaces, J. Algebra382 (2013), 240-281.10.1016/j.jalgebra.2013.02.018 · Zbl 1319.13012
[10] I.Canakci and R.Schiffler, Snake graph calculus and cluster algebras from surfaces II: Self-crossing snake graphs, Math. Z.281 (2015), 55-102.10.1007/s00209-015-1475-y · Zbl 1375.13029
[11] I.Canakci and R.Schiffler, Snake graph calculus and cluster algebras from surfaces III: Band graphs and snake rings, Preprint (2015), arXiv:1506.01742. · Zbl 1375.13029
[12] I.Canakci and S.Schroll, Extensions in Jacobian algebras and cluster categories of marked surfaces, Preprint (2014), arXiv:1408.2074. · Zbl 1401.13064
[13] W.Crawley-Boevey, Functorial filtrations II: Clans and the Gelfand problem, J. Lond. Math. Soc. (2)40 (1989), 9-30.10.1112/jlms/s2-40.1.9 · Zbl 0725.16012 · doi:10.1112/jlms/s2-40.1.9
[14] B.Deng, On a problem of Nazarova and Roiter, Comment. Math. Helv.75 (2000), 368-409.10.1007/s000140050132 · Zbl 0972.16005 · doi:10.1007/s000140050132
[15] H.Derksen, J.Weyman and A.Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math. (N.S.)14 (2008), 59-119.10.1007/s00029-008-0057-9 · Zbl 1204.16008
[16] A.Felikson, M.Shapiro and P.Tumarkin, Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc. (JEMS)14 (2012), 1135-1180.10.4171/JEMS/329 · Zbl 1262.13038
[17] V. V.Fock and A. B.Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci.103 (2006), 1-211.10.1007/s10240-006-0039-4 · Zbl 1099.14025
[18] V. V.Fock and A. B.Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4)42 (2009), 865-930.10.24033/asens.2112 · Zbl 1180.53081
[19] S.Fomin, M.Shapiro and D.Thurston, Cluster algebras and triangulated surfaces, part I: Cluster complexes, Acta Math.201 (2008), 83-146.10.1007/s11511-008-0030-7 · Zbl 1263.13023
[20] S.Fomin and A.Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc.15 (2002), 497-529.10.1090/S0894-0347-01-00385-X · Zbl 1021.16017
[21] C.Geiß, Maps between representations of clans, J. Algebra218 (1999), 131-164.10.1006/jabr.1998.7829 · Zbl 0978.16010 · doi:10.1006/jabr.1998.7829
[22] C.Geiß and J. A.de la Peña, Auslander-Reiten components for clans, Boll. Soc. Mat. Mexicana5 (1999), 307-326. · Zbl 0959.16013
[23] C.Geiß, D.Labardini-Fragoso and J.Schröer, The representation type of Jacobian algebras, Adv. Math.290 (2016), 364-452.10.1016/j.aim.2015.09.038 · Zbl 1380.16013
[24] G.Irelli and D.Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, part III: Tagged triangulations and cluster monomials, Compos. Math.148 (2012), 1833-1866.10.1112/S0010437X12000528 · Zbl 1282.16018
[25] O.Iyama and Y.Yoshino, Mutations in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math.172 (2008), 117-168.10.1007/s00222-007-0096-4 · Zbl 1140.18007
[26] B.Keller, Cluster algebras and derived categories, in Derived categories in algebraic geometry, EMS Series of Congress Reports (European Mathematical Society, Zürich, 2012), 123-183. · Zbl 1299.13027
[27] B.Keller, Deformed Calabi-Yau completions, J. reine angew. Math.2013 (2013), 125-180. · Zbl 1220.18012
[28] B.Keller and I.Reiten, Cluster tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math.211 (2007), 123-151.10.1016/j.aim.2006.07.013 · Zbl 1128.18007
[29] B.Keller and D.Yang, Derived equivalences from mutations of quivers with potential, Adv. Math.226 (2011), 2118-2168.10.1016/j.aim.2010.09.019 · Zbl 1272.13021
[30] S.Koenig and B.Zhu, From triangulated categories to abelian categories: cluster tilting in a general framework, Math. Z.258 (2008), 143-160.10.1007/s00209-007-0165-9 · Zbl 1133.18005
[31] D.Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. (3)98 (2009), 797-839.10.1112/plms/pdn051 · Zbl 1241.16012 · doi:10.1112/plms/pdn051
[32] D.Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Part II: Arc representations, Preprint (2009), arXiv:0909.4100. · Zbl 1241.16012
[33] D.Labardini-Fragoso, On triangulations, quivers with potentials and mutations, in Mexican mathematicians abroad: recent contributions, Contemporary Mathematics, vol. 657 (American Mathematical Society, Providence, RI, 2016), 103-127.10.1090/conm/657/13092 · Zbl 1347.16012
[34] R. J.Marsh and Y.Palu, Coloured quivers for rigid objects and partial triangulations: the unpunctured case, Proc. Lond. Math. Soc. (3)108 (2014), 411-440.10.1112/plms/pdt032 · Zbl 1338.18041
[35] M.Mills, Maximal green sequences for quivers of finite mutation type, Preprint (2016),arXiv:1606.03799. · Zbl 1376.30028
[36] G.Musiker, R.Schiffler and L.Williams, Positivity for cluster algebras from surfaces, Adv. Math.227 (2011), 2241-2308.10.1016/j.aim.2011.04.018 · Zbl 1331.13017
[37] G.Musiker, R.Schiffler and L.Williams, Bases for cluster algebras from surfaces, Compos. Math.149 (2013), 217-263.10.1112/S0010437X12000450 · Zbl 1263.13024
[38] G.Musiker and L.Williams, Matrix formulae and skein relations for cluster algebras from surfaces, Int. Math. Res. Not. IMRN2013 (2012), 2891-2944. · Zbl 1320.13028
[39] Y.Palu, Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble)58 (2008), 2221-2248.10.5802/aif.2412 · Zbl 1154.16008 · doi:10.5802/aif.2412
[40] P.-G.Plamondon, Cluster algebras via cluster categories with infinite dimensional morphism spaces, Compos. Math.147 (2011), 1921-1954.10.1112/S0010437X11005483 · Zbl 1244.13017 · doi:10.1112/S0010437X11005483
[41] Y.Qiu, Decorated marked surfaces: spherical twists versus braid twists, Math. Ann.365 (2016), 595-633.10.1007/s00208-015-1339-0 · Zbl 1378.16027 · doi:10.1007/s00208-015-1339-0
[42] Y.Qiu and Y.Zhou, Decorated marked surfaces II: Intersection numbers and dimensions of Homs, Preprint (2014), arXiv:1411.4003. · Zbl 1444.16013
[43] R.Schiffler, A geometric model for cluster categories of type D_n, J. Algebraic Combin.27 (2008), 1-21.10.1007/s10801-007-0071-6 · Zbl 1165.16008 · doi:10.1007/s10801-007-0071-6
[44] J.Zhang, Y.Zhou and B.Zhu, Cotorsion pairs in the cluster category of a marked surface, J. Algebra391 (2013), 209-226.10.1016/j.jalgebra.2013.06.014 · Zbl 1297.13028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.