×

Cotorsion pairs in the cluster category of a marked surface. (English) Zbl 1297.13028

The authors study the properties of cluster categories arising from unpunctured marked surfaces. A correspondence between curves on the surfaces and objects in the categories is given in [T. Brüstle and J. Zhang, Algebra Number Theory 5, No. 4, 529–566 (2011; Zbl 1250.16013)]. Under this correspondence, they show that the intersection number between curves corresponds to the dimension of \(\operatorname{Ext}^1\) between objects. Applications include the classification and geometric realization of cotorsion pairs (and their mutations) in these categories.
Reviewer: Yu Qiu (Trondheim)

MSC:

13F60 Cluster algebras
16G20 Representations of quivers and partially ordered sets
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
18E30 Derived categories, triangulated categories (MSC2010)
57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)

Citations:

Zbl 1250.16013

References:

[1] Amiot, C., Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier, 59, 2525-2590 (2009) · Zbl 1239.16011
[2] Assem, I.; Brüstle, T.; Charbonneau-Jodoin, G.; Plamondon, P.-G., Gentle algebras arising from surface triangulations, Algebra Number Theory, 4, 2, 201-229 (2010) · Zbl 1242.16011
[3] Assem, I.; Simson, D.; Skowronski, A., Elements of the Representation Theory of Associative Algebras, vol. 1. Techniques of Representation Theory, London Math. Soc. Stud. Texts, vol. 65 (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1092.16001
[4] Baur, K.; Buan, A.; Marsh, R., Torsion pairs and rigid objects in tubes · Zbl 1344.16013
[5] Baur, K.; Marsh, R., Geometric models of tube categories
[6] Beilinson, A. A.; Bernstein, J.; Deligne, P., Faisceaux pervers, Astérisque, vol. 100 (1982), Soc. Math. France · Zbl 0536.14011
[7] Beligiannis, A.; Reiten, I., Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc., 883, 426-454 (2007) · Zbl 1124.18005
[8] Brüstle, T.; Zhang, J., On the cluster category of a marked surface without punctures, Algebra Number Theory, 5, 4, 529-566 (2011) · Zbl 1250.16013
[9] Buan, A.; Iyama, O.; Reiten, I.; Scott, J., Cluster structure for 2-Calabi-Yau categories and unipotent groups, Compos. Math., 145, 4, 1035-1079 (2009) · Zbl 1181.18006
[10] Buan, A.; Marsh, R.; Reineke, M.; Reiten, I.; Todorov, G., Tilting theory and cluster combinatorics, Adv. Math., 204, 572-612 (2006) · Zbl 1127.16011
[11] Butler, M. C.R.; Ringel, C. M., Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra, 15, 145-179 (1987) · Zbl 0612.16013
[12] Caldero, P.; Chapoton, F.; Schiffler, R., Quivers with relations arising from clusters \((A_n\) case), Trans. Amer. Math. Soc., 358, 3, 1347-1364 (2006) · Zbl 1137.16020
[13] Crawley-Boevey, W. W., Maps between representations of zero-relation algebras, J. Algebra, 126, 2, 259-263 (1989) · Zbl 0685.16018
[14] Dickson, S. D., A torsion theory for abelian category, Trans. Amer. Math. Soc., 121, 223-235 (1966) · Zbl 0138.01801
[15] Fomin, S.; Shapiro, M.; Thurston, D., Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math., 201, 83-146 (2008) · Zbl 1263.13023
[16] Gorodentsev, A. L., Exceptional bundles on surfaces with a moving anticanonical classes, Izv. Akad. Nauk SSSR Ser. Mat.. Izv. Akad. Nauk SSSR Ser. Mat., Math. USSR-Izv., 33, 1, 67-83 (1989), (in Russian); English translation in: · Zbl 0736.14003
[17] Holm, T.; Jørgensen, P., On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon, Math. Z., 270, 277-295 (2012) · Zbl 1234.13020
[18] Holm, T.; Jørgensen, P.; Rubey, M., Ptolemy diagrams and torsion pairs in the cluster category of Dynkin type \(A_n\), J. Algebraic Combin., 34, 507-523 (2011) · Zbl 1229.05220
[19] Iyama, O.; Yoshino, Y., Mutations in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., 172, 117-168 (2008) · Zbl 1140.18007
[20] Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc., 98, 797-839 (2008) · Zbl 1241.16012
[21] Keller, B., Triangulated Calabi-Yau categories, (Skowronski, A., Trends in Representation Theory of Algebras (Zurich) (2008), European Mathematical Society), 467-489 · Zbl 1202.16014
[22] Keller, B., Cluster algebras and derived categories · Zbl 1299.13027
[23] Keller, B.; Reiten, I., Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math., 211, 123-151 (2007) · Zbl 1128.18007
[24] Keller, B.; Yang, D., Derived equivalences from mutations of quivers with potential, Adv. Math., 226, 2118-2168 (2011) · Zbl 1272.13021
[25] Koenig, S.; Zhu, B., From triangulated categories to abelian categories—cluster tilting in a general framework, Math. Z., 258, 143-160 (2008) · Zbl 1133.18005
[26] Marsh, R. J.; Palu, Y., Coloured quivers for rigid objects and partial triangulations: the unpunctured case · Zbl 1338.18041
[27] Nakaoka, H., General heart construction on a triangulated category (I): unifying \(t\)-structures and cluster tilting subcategories, Appl. Categ. Structures, 19, 6, 879-899 (2011) · Zbl 1254.18011
[28] Ng, P., A characterization of torsion theories in the cluster category of Dynkin type \(A_\infty \)
[29] Palu, Y., Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier, 58, 6, 2221-2248 (2008) · Zbl 1154.16008
[30] Reiten, I., Cluster categories, (Proceedings of ICM. Proceedings of ICM, Hyderabad, India (2010), Hindustan Book Agency: Hindustan Book Agency New Delhi), 558-594, distributed by World Scientific Publishing Co. Pte. Ltd., Singapore, 2010; see also · Zbl 1264.16017
[31] Schiffler, R., A geometric model for cluster categories of type \(D_n\), J. Algebraic Combin., 27, 1, 1-21 (2008) · Zbl 1165.16008
[32] Schröer, J., Modules without self-extensions over gentle algebras, J. Algebra, 216, 178-189 (1999) · Zbl 0994.16013
[33] Zhou, Y.; Zhu, B., Mutation of torsion pairs in triangulated categories and its geometric realization · Zbl 1405.18027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.