×

Improved integration scheme for the second-order consistent element-free Galerkin method. (English) Zbl 1404.65280

Summary: Consistent element-free Galerkin (CEFG) methods have improved the accuracy, efficiency and convergence of high-order EFG methods remarkably by developing integration schemes using less sampling points and corrected derivatives of nodal shape functions. However, the computation of these derivatives still takes considerable CPU time because it involves the evaluation of shape functions at relatively more points and the solution of equations. To reduce the evaluation of these functions substantially, an improved integration scheme is proposed for the second-order CEFG method. Moreover, these corrected derivatives are explicitly formulated in terms of the shape functions. In consequence, the computational efficiency of second-order CEFG method is further improved by this scheme. Furthermore, the high accuracy and convergence of the CEFG method is still maintained. Numerical results of elastic examples show that this improved CEFG method is evidently faster than the original and its efficiency approaches that of nesting sub-domains gradient smoothing (NSGS), which was developed recently for second-order meshfree Galerkin methods. An extension to small-strain elastoplasticity is also presented where the proposed method is demonstrated to perform much better than NSGS in elastoplastic computations.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element methods: diffuse approximation and diffuse elements, Comput Mech, 10, 307-318, (1992) · Zbl 0764.65068
[2] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229-256, (1994) · Zbl 0796.73077
[3] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 8-9, 1081-1106, (1994) · Zbl 0881.76072
[4] Sukumar, N.; Wright, R. W., Overview and construction of meshfree basis functions: from moving least squares to entropy approximants, Int J Numer Methods Eng, 70, 181-205, (2007) · Zbl 1194.65149
[5] Atluri, S. N.; Zhu, T., A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 117-127, (1998) · Zbl 0932.76067
[6] Zhang, X., Least-squares collocation meshless method, Int J Numer Methods Eng, 51, 1089-1100, (2001) · Zbl 1056.74064
[7] Wang, D. D.; Wang, J. R.; Wu, J. C., Superconvergent gradient smoothing meshfree collocation method, Comput Methods Appl Mech Eng, 340, 728-766, (2018) · Zbl 1440.65255
[8] Krysl, P.; Belytschko, T., Analysis of thin plates by the element-free Galerkin method, Comput Mech, 17, 26-35, (1995) · Zbl 0841.73064
[9] Vu, T.; Nguyen, N.; Khosravifard, A., A simple FSDT-based meshfree method for analysis of functionally graded plates, Eng Anal Bound Elem, 79, 1-12, (2017) · Zbl 1403.74128
[10] Millán, D.; Rosolen, A.; Arroyo, M., Thin shell analysis from scattered points with maximum-entropy approximation, Int J Numer Methods Eng, 85, 723-751, (2011) · Zbl 1217.74147
[11] Chen, J. S.; Pan, C.; Wu, C. T.; Liu, W. K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput Methods Appl Mech Eng, 139, 195-227, (1996) · Zbl 0918.73330
[12] Liu, W. K.; Hao, S.; Belytschko, T.; Li, S. F.; Chan, C. T., Multiple scale meshfree methods for damage fracture and localization, Comput Mater Sci, 16, 197-205, (1999)
[13] Belytschko, T.; Organ, D.; Gerlach, C., Element-free Galerkin methods for dynamic fracture in concrete, Comput Methods Appl Mech Eng, 187, 385-399, (2010) · Zbl 0962.74077
[14] Nguyen, N.; Bui, T.; Zhang, C.; Truong, T., Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method, Eng Anal Bound Elem, 44, 87-97, (2014) · Zbl 1297.74108
[15] Belytschko, T.; Fleming, M., Smoothing, enrichment and contact in the element-free Galerkin method, Comput Struct, 71, 173-195, (1999)
[16] Rabczuk, T.; Zi, G., A meshfree method based on the local partition of unity for cohesive cracks, Comput Mech, 39, 743-760, (2007) · Zbl 1161.74055
[17] Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H., A simple and robust three-dimensional cracking-particle method without enrichment, Comput Methods Appl Mech Eng, 385, 2437-2455, (2010) · Zbl 1231.74493
[18] Amiri, F.; Millan, D.; Shen, Y.; Rabczuk, T.; Arroyo, M., Phase-field modeling of fracture in linear thin shells, Theor Appl Fract Mech, 69, 102-109, (2014)
[19] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput Mech, 23, 219-230, (1999) · Zbl 0963.74076
[20] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput Methods Appl Mech Eng, 139, 49-74, (1996) · Zbl 0918.73329
[21] Dyka, C. T.; Randles, P. W.; Ingel, R. P., Stress points for tension instability in SPH, Int J Numer Methods Eng, 40, 2325-2341, (1997) · Zbl 0890.73077
[22] Fries, T. P.; Belytschko, T., Convergence and stabilization of stress-point integration in mesh-free and particle methods, Int J Numer Methods Eng, 74, 1067-1087, (2008) · Zbl 1158.74525
[23] Liu, Y.; Belytschko, T., A new support integration scheme for the weakform in mesh-free methods, Int J Numer Methods Eng, 82, 699-725, (2010) · Zbl 1188.74084
[24] Nguyen, V.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Math Comput Simul, 79, 763-813, (2008) · Zbl 1152.74055
[25] Wu, J.; Deng, J.; Wang, J.; Wang, D., A review of numerical integration approaches for Galerkin meshfree methods, Chin J Solid Mech, 37, 208-233, (2016), Chinese
[26] Nagashima, T., Node-by-node meshless approach and its applications to structural analyses, Int J Numer Methods Eng, 46, 341-385, (1999) · Zbl 0965.74079
[27] Liu, G. R.; Zhang, G. Y.; Wang, Y. Y.; Zhong, Z. H.; Li, G. Y.; Han, X., A nodal integration technique for meshfree radial point interpolation method (NI-RPIM), Int J Solids Struct, 44, 3840-3860, (2007) · Zbl 1135.74050
[28] Amiri, F.; Anitescu, C.; Arroyo, M.; Bordas, S.; Rabczuk, T., XLME interpolants, a seamless bridge between XFEM and enriched meshless methods, Comput Mech, 53, 45-57, (2014) · Zbl 1398.74449
[29] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int J Numer Methods Eng, 50, 435-466, (2001) · Zbl 1011.74081
[30] Krongauz, Y.; Belytschko, T., Consistent pseudo-derivatives in meshless methods, Comput Methods Appl Mech Eng, 146, 371-386, (1997) · Zbl 0894.73156
[31] Rabczuk, T.; Belytschko, T.; Xiao, S., Stable particle methods based on Lagrangian kernels, Comput Methods Appl Mech Eng, 193, 1035-1063, (2004) · Zbl 1060.74672
[32] Sze, K. Y.; Chen, J. S.; Sheng, N.; Liu, X. H., Stabilized conforming nodal integration: exactness and variational justification, Finite Elem Anal Des, 41, 147-171, (2001)
[33] Wang, D.; Chen, J. S., Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation, Comput Methods Appl Mech Eng, 193, 12-14, 1065-1083, (2004) · Zbl 1060.74675
[34] Chen, J. S.; Wang, D., A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinate, Int J Numer Methods Eng, 68, 2, 151-172, (2006) · Zbl 1130.74055
[35] Wang, D.; Chen, J. S., A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration, Int J Numer Methods Eng, 74, 3, 368-390, (2008) · Zbl 1159.74460
[36] Thai, C. H.; Ferreira, A. J.M.; Rabczuk, T.; Nguyen-Xuan H., A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis, Eng Anal Bound Elem, 92, 136-155, (2018) · Zbl 1403.74322
[37] Chen, J. S.; Yoon, S.; Wu, C. T., Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods, Int J Numer Methods Eng, 53, 12, 2587-2615, (2002) · Zbl 1098.74732
[38] Puso, M. A.; Chen, J. S.; Zywicz, E.; Elmer, W., Meshfree and finite element nodal integration methods, Int J Numer Methods Eng, 74, 416-446, (2008) · Zbl 1159.74456
[39] Duan, Q. L.; Li, X. K.; Zhang, H. W.; Belytschko, T., Second-order accurate derivatives and integration schemes for meshfree methods, Int J Numer Methods Eng, 92, 399-424, (2012) · Zbl 1352.65390
[40] Duan, Q. L.; Gao, X.; Wang, B. B., Consistent element-free Galerkin method, Int J Numer Methods Eng, 99, 2, 79-101, (2014) · Zbl 1352.65493
[41] Wang, D.; Wu, J., An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods, Comput Methods Appl Mech Eng, 298, 485-519, (2016) · Zbl 1425.65182
[42] Liu, W. K.; Li, S. F.; Belytschko, T., Moving least-square reproducing kernel methods(I) Methodology and convergence, Comput Methods Appl Mech Eng, 143, 113-154, (1997) · Zbl 0883.65088
[43] Simo, J. C.; Hughes, T. J.R., One the variational foundations of assumed strain methods, ASME J Appl Mech, 53, 51-53, (1986) · Zbl 0592.73019
[44] Fish, J.; Belytschko, T., Elements with embedded localization zones for large deformation problems, Comput Struct, 30, 247-256, (1988) · Zbl 0667.73033
[45] Fernández-Méndez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput Methods Appl Mech Eng, 193, 1257-1275, (2004) · Zbl 1060.74665
[46] Zhuang, X. Y.; Zhu, H. H.; Augarde, C., An improved meshless Shepard and least squares method possessing the delta property and requiring no singular weight function, Comput Mech, 53, 343-357, (2014) · Zbl 1398.74486
[47] Gao, X.; Duan, Q. L.; Li, S. H.; Chen, B. S., Consistent high order meshfree method for crack problems, Chin J Comput Mech, 35, 275-282, (2018), in Chinese · Zbl 1424.74050
[48] Duan, Q. L.; Gao, X.; Wang, B. B., A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation, Comput Methods Appl Mech Eng, 280, 84-116, (2014) · Zbl 1423.74877
[49] Simo, J. C.; Hughes, T. J.R., Computational inelasticity, (1998), Springer · Zbl 0934.74003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.