×

An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. (English) Zbl 1425.65182

Summary: An efficient nesting sub-domain gradient smoothing integration algorithm is proposed for Galerkin meshfree methods with particular reference to the quadratic exactness. This approach is consistently built upon the smoothed gradients of meshfree shape functions defined on two-level nesting triangular sub-domains, where each integration cell consists of four equal-area nesting sub-domains. First, a rational measure is designed to evaluate the error of the gradient smoothing integration for the stiffness matrix. Thereafter through a detailed analysis of the gradient smoothing integration errors associated with the two-level nesting triangular sub-domains, a quadratically exact algorithm for the stiffness matrix integration is established through optimally combining the contributions from the two-level nesting sub-domains. Meanwhile, the integration of force terms consistent with the stiffness integration is presented in order to ensure exact quadratic solutions within the Galerkin formulation. It is noted that the proposed approach with quadratic exactness shares the same foundation as the well-established stabilized conforming nodal integration method with linear exactness, i.e., the smoothed derivatives of meshfree shape functions are directly built upon the values of meshfree shape functions on the boundary of the integration cells and the time consuming derivative computations are completely avoided. Moreover, the present formulation has even less integration sampling points than the four point Gauss integration. Numerical examples show very favorable performance regarding the accuracy and efficiency for the proposed approach.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[2] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Gakerkin methods, Internat. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[3] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20, 1081-1106 (1995) · Zbl 0881.76072
[4] Belytschko, T.; Kronggauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075
[5] Atluri, S. N.; Shen, S. P., The Meshless Local Petrov-Galerkin (MLPG) Method (2002), Tech. Science · Zbl 1012.65116
[6] Babuška, I.; Banerjee, U.; Osborn, J. E., Survey of meshless and generalized finite element methods: a unified approach, Acta Numer., 12, 1-125 (2003) · Zbl 1048.65105
[7] Li, S.; Liu, W. K., Meshfree Particle Methods (2004), Springer-Verlag · Zbl 1073.65002
[8] Zhang, X.; Liu, Y., Meshless Methods (2004), Tsinghua University Press & Springer-Verlag
[9] Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: A review and computer implementation aspects, Math. Comput. Simul., 79, 763-813 (2008) · Zbl 1152.74055
[10] Liu, G. R., Meshfree Methods: Moving Beyond The Finite Element Method (2009), CRC Press
[11] Belytschko, T.; Organ, D.; Gerlach, C., Element-free Galerkin methods for dynamic fracture in concrete, Comput. Methods Appl. Mech. Engrg., 187, 385-399 (2000) · Zbl 0962.74077
[12] Rabczuk, T.; Bordas, S.; Zi, G., A three-dimensional meshfree method for continuous multiplecrack initiation, nucleation and propagation in statics and dynamics, Comput. Mech., 40, 473-495 (2007) · Zbl 1161.74054
[13] Krysl, P.; Belytschko, T., Analysis of thin shells by the element-free Galerkin method, Internat J. Solids Struct., 33, 3057-3080 (1996) · Zbl 0929.74126
[14] Rabczuk, T.; Areias, P. M.A.; Belytschko, T., A meshfree thin shell method for nonlinear dynamic fracture, Internat. J. Numer. Methods Engrg., 72, 524-548 (2007) · Zbl 1194.74537
[15] Chen, J. S.; Pan, C.; Wu, C. T.; Liu, W. K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. Methods Appl. Mech. Engrg., 139, 195-227 (1996) · Zbl 0918.73330
[16] Li, S.; Hao, W.; Liu, W. K., Meshfree simulations of shear banding in large deformation, Internat J. Solids Struct., 37, 7185-7206 (2000) · Zbl 0995.74082
[17] Ren, B.; Li, S., Meshfree simulations of plugging failures in high-speed impacts, Comput. Struct., 88, 909-923 (2013)
[18] Wu, Y.; Magallanes, J. M.; Crawford, J. E., Fragmentation and debris evolution modeled by a point-wise coupled reproducing kernel/finite element formulation, Int. J. Damage Mech., 23, 1005-1034 (2014)
[19] Wu, C. T.; Guo, Y.; Askari, E., Numerical modeling of composite solids using an immersed meshfree Galerkin method, Composites B, 45, 1397-1413 (2013)
[20] Sukumar, N., Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons, Comput. Methods Appl. Mech. Engrg., 263, 27-41 (2013) · Zbl 1286.65168
[21] Barbieri, E.; Petrinic, N., Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods, Comput. Mech., 53, 325-342 (2014) · Zbl 1398.74451
[22] Wang, D.; Chen, P., Quasi-convex reproducing kernel meshfree method, Comput. Mech., 54, 689-709 (2014) · Zbl 1311.65152
[23] Bessa, M. A.; Foster, J. T.; Belytschko, T.; Liu, W. K., A meshfree unification: reproducing kernel peridynamics, Comput. Mech., 53, 1251-1264 (2014) · Zbl 1398.74452
[24] Peco, C.; Milian, D.; Rosolen, A.; Arroyo, M., Efficient implementation of Galerkin meshfree methods for large-scale problems with an emphasis on maximum entropy approximants, Comput. & Structures, 150, 52-62 (2015)
[25] Metsis, P.; Lantzounis, N.; Papadrakakis, M., A new hierarchical partition of unity formulation of EFG meshless methods, Comput. Methods Appl. Mech. Engrg., 283, 782-805 (2015) · Zbl 1423.74906
[26] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comp., 37, 141-158 (1981) · Zbl 0469.41005
[27] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117-127 (1998) · Zbl 0932.76067
[28] De, S.; Bathe, K. J., The method of finite spheres with improved numerical integration, Comput. Struct., 79, 2183-2196 (2001)
[29] Liu, Y.; Belytschko, T., A new support integration scheme for the weakform in mesh-free methods, Internat. J. Numer. Methods Engrg., 82, 699-715 (2010) · Zbl 1188.74084
[30] Carpinteri, A.; Ferro, G.; Ventura, G., The partition of unity quadrature in meshless methods, Internat. J. Numer. Methods Engrg., 54, 987-1006 (2002) · Zbl 1028.74047
[31] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method. Part II: Efficient cover construction and reliable integration, SIAM J. Sci. Comput., 23, 1655-1682 (2002) · Zbl 1011.65069
[32] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech., 23, 219-230 (1999) · Zbl 0963.74076
[33] Babuška, I.; Banerjee, U.; Osborn, J. E.; Li, Q. L., Quadrature for meshless methods, Internat. J. Numer. Methods Engrg., 76, 1434-1470 (2008) · Zbl 1195.65165
[34] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput. Methods Appl. Mech. Engrg., 139, 49-64 (1996) · Zbl 0918.73329
[35] Karatarakis, A.; Metsis, P.; Papadrakakis, M., GPU-acceleration of stiffness matrix calculation and efficient initialization of EFG meshless methods, Comput. Methods Appl. Mech. Engrg., 258, 63-80 (2013) · Zbl 1286.65162
[36] Dyka, C. T.; Randles, P. W.; Ingel, R. P., Stress points for tension instability in SPH, Internat. J. Numer. Methods Engrg., 40, 2325-2341 (1997) · Zbl 0890.73077
[37] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on Lagrangian kernels, Comput. Methods Appl. Mech. Engrg., 193, 1035-1063 (2004) · Zbl 1060.74672
[38] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin meshfree methods, Internat. J. Numer. Methods Engrg., 50, 435-466 (2001) · Zbl 1011.74081
[39] Chen, J. S.; Yoon, S.; Wu, C. T., Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods, Internat. J. Numer. Methods Engrg., 53, 2587-2615 (2002) · Zbl 1098.74732
[40] Chen, J. S.; Wu, C. T.; Belytschko, T., Regularization of material instabilities by meshfree approximations with intrinsic length scales, Internat. J. Numer. Methods Engrg., 47, 1301-1322 (2000) · Zbl 0987.74079
[41] Wang, D.; Chen, J. S., Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation, Comput. Methods Appl. Mech. Engrg., 193, 1065-1083 (2004) · Zbl 1060.74675
[42] Chen, J. S.; Wang, D., A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates, Internat. J. Numer. Methods Engrg., 68, 151-172 (2006) · Zbl 1130.74055
[43] Wang, D.; Wu, Y., An efficient Galerkin meshfree analysis of shear deformable cylindrical panels, Interact. Multiscale Mech., 1, 339-355 (2008)
[44] Wang, D.; Lin, Z., Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration, Comput. Mech., 46, 703-719 (2010) · Zbl 1398.74157
[45] Wang, D.; Lin, Z., Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures, Comput. Mech., 48, 47-63 (2011) · Zbl 1398.74478
[46] Wang, D.; Peng, H., A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates, Comput. Mech., 51, 1013-1029 (2013) · Zbl 1366.74023
[47] Wang, D.; Song, C.; Peng, H., A circumferentially enhanced Hermite reproducing kernel meshfree method for buckling analysis of Kirchhoff-Love cylindrical shells, Int. J. Struct. Stab. Dyn., 15, 1450090 (2015) · Zbl 1359.74446
[48] Yoo, J. W.; Moran, B.; Chen, J. S., Stabilized conforming nodal integration in the natural-element method, Internat. J. Numer. Methods Engrg., 60, 861-890 (2004) · Zbl 1060.74677
[49] Wang, D.; Li, Z.; Li, L.; Wu, Y., Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium, Sci. China-Technol. Sci., 54, 573-580 (2011) · Zbl 1419.74264
[50] Le, C. V.; Askes, H.; Gilbert, M., A locking-free stabilized kinematic EFG model for plane strain limit analysis, Comput. Struct., 106, 1-8 (2012)
[51] Sadamoto, S.; Tanaka, S.; Okazawa, S., Elastic large deflection analysis of plates subjected to uniaxial thrust using meshfree Mindlin-Reissner formulation, Comput. Mech., 52, 1313-1330 (2013) · Zbl 1398.74475
[52] Liew, K. M.; Lei, Z. X.; Yu, J. L.; Zhang, L. W., Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach, Comput. Methods Appl. Mech. Engrg., 268, 1-17 (2014) · Zbl 1295.74062
[53] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput. Mech., 39, 859-877 (2007) · Zbl 1169.74047
[54] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J. F., A smoothed finite element method for plate analysis, Comput. Methods Appl. Mech. Engrg., 197, 1184-1203 (2008) · Zbl 1159.74434
[55] Wu, C. T.; Hu, W.; Liu, G. R., Bubble-enhanced smoothed finite element formulation: a variational multi-scale approach for volume-constrained problems in two-dimensional linear elasticity, Internat. J. Numer. Methods Engrg., 100, 374-398 (2014) · Zbl 1352.74451
[56] Liu, G. R.; Xu, X.; Zhang, G. Y.; Nguyen-Thoi, T., A superconvergent point interpolation method (SC-PIM) with piecewise linear strain field using triangular mesh, Internat. J. Numer. Methods Engrg., 77, 1439-1467 (2009) · Zbl 1156.74394
[57] Zhang, G. Y.; Liu, G. R.; Xu, X., A strain-constructed point interpolation method and strain field construction schemes for solid mechanics problems using triangular mesh, Appl. Math. Comput., 219, 2067-2086 (2012) · Zbl 1291.74185
[58] Chen, J. S.; Hillman, M.; Rüter, M., An arbitrary order variationally consistent integration for Galerkin meshfree methods, Internat. J. Numer. Methods Engrg., 95, 387-418 (2013) · Zbl 1352.65481
[59] Hillman, M.; Chen, J. S.; Chi, S. W., Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems, Comput. Part. Mech., 1, 245-256 (2014)
[60] Ruter, M.; Hillman, M.; Chen, J. S., (Corrected Stabilized Non-conforming Nodal Integration in Meshfree Methods. Corrected Stabilized Non-conforming Nodal Integration in Meshfree Methods, Lecture Notes in Computational Science and Engineering, vol. 89 (2013)), 75-93 · Zbl 1267.65186
[61] Hillman, M.; Chen, J. S.; Bazilevs, Y., Variationally consistent domain integration for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284, 521-540 (2015) · Zbl 1425.65161
[62] Duan, Q.; Li, X.; Zhang, H.; Belytschko, T., Second-order accurate derivatives and integration schemes for meshfree methods, Internat. J. Numer. Methods Engrg., 92, 399-424 (2012) · Zbl 1352.65390
[63] Duan, Q.; Gao, X.; Wang, B.; Li, X.; Zhang, H.; Belytschko, T.; Shao, Y., Consistent element-free Galerkin method, Internat. J. Numer. Methods Engrg., 99, 79-101 (2014) · Zbl 1352.65493
[64] Duan, Q.; Gao, X.; Wang, B.; Li, X.; Zhang, H., A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation, Comput. Methods Appl. Mech. Engrg., 280, 84-116 (2014) · Zbl 1423.74877
[65] Ortiz-Bernardin, A.; Puso, M. A.; Sukumar, N., Improved robustness for nearly-incompressible large deformation meshfree simulations on Delaunay tessellations, Comput. Methods Appl. Mech. Engrg., 293, 348-374 (2015) · Zbl 1423.74962
[66] Ortiz-Bernardin, A.; Hale, J. S.; Cyron, C. J., Volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions, Comput. Methods Appl. Mech. Engrg., 285, 427-451 (2015) · Zbl 1423.74911
[67] Brezinski, C.; Redivo Zaglia, M., Extrapolation Methods: Theory and Practice (1991), North-Holland · Zbl 0744.65004
[68] Chen, J. S.; Wang, H. P., New boundary condition treatments in meshfree computation of contact problems, Comput. Methods Appl. Mech. Engrg., 187, 441-468 (2000) · Zbl 0980.74077
[69] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), John Wiley & Sons · Zbl 0959.74001
[70] Steger, C., On the Calculation of Arbitrary Moments of Polygons, Technical Report FGBV-96-05 (1996), Technische Universität München
[71] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1970), McGraw-Hill · Zbl 0266.73008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.